An Agent-Based Approach for the Planning of Distribution Grids as a Socio-Technical System

Recent developments, such as smart metering, distributed energy resources, microgrids, and energy storage, have led to an exponential increase in system complexity and have emphasized the need to include customer behavior and social and cultural backgrounds in planning activities. This paper analyzes how emergent behavior in electricity consumption can affect the planning of distribution grids with a smart grid vision. For this, an agent-based model that uses insights from the field of behavioral economics to differentiate four consumer categories (high income, low income, middle class, and early adopters) was used. The model was coupled with a real distribution feeder and customer load curve data, and the results showed that heterogeneity of customer’s preferences, values, and behavior led to very distinct load growth patterns. The results emphasize the relevance of modeling customer’s behavioral aspects in planning increasingly complex power systems.