The two faces of static correlation.

Restricted Hartree-Fock (RHF) and UHF wavefunctions for beryllium-like ions with nuclear charge 3 ≤ Z ≤ 5 are found using a near-complete Slater basis set. The triplet (RHF → UHF) instability and correlation energy are investigated as a function of Z and we find that the instability vanishes for Z > 4.5. We reproduce this surprising behavior using a minimal-basis model and, by comparing with the stretched H(2) molecule, conclude that "static" (also known as nondynamical, near-degeneracy, first-order, or strong) correlation comes in two flavors: one that can be captured by UHF and another that cannot. In the former (Type A), there is an "absolute near-degeneracy"; in the latter (Type B), there is a "relative near-degeneracy." This dichotomy clarifies discussions of static correlation effects.

[1]  S. Goedecker,et al.  Natural Orbital Functional for the Many-Electron Problem , 1998 .

[2]  P. Gill,et al.  Correlation energy of two electrons in a ball. , 2010, The Journal of chemical physics.

[3]  P. Gill,et al.  Intracule functional models: I. Angle-corrected correlation kernels. , 2007, Physical chemistry chemical physics : PCCP.

[4]  Stephen Wilson,et al.  Diagrammatic perturbation theory: An application to the nitrogen, carbon monoxide, and boron fluoride molecules using a universal even‐tempered basis set , 1980 .

[5]  P. Bernath,et al.  Molecular electronic structure , 2003 .

[6]  K. Hallberg New trends in density matrix renormalization , 2006, cond-mat/0609039.

[7]  A. Thakkar,et al.  Improved Roothaan–Hartree–Fock wave functions for atoms and ions with N≤54 , 1995 .

[8]  M. Ratner,et al.  Electron correlation in chemical bonds , 2000 .

[9]  Lubos Mitas,et al.  Quantum Monte Carlo for atoms, molecules and solids , 2009 .

[10]  Garnet Kin-Lic Chan,et al.  An algorithm for large scale density matrix renormalization group calculations. , 2004, The Journal of chemical physics.

[11]  Krishnan Raghavachari,et al.  Highly correlated systems: Structure, binding energy and harmonic vibrational frequencies of ozone , 1989 .

[12]  P. Gill,et al.  A tale of two electrons: Correlation at high density , 2010, 1008.2252.

[13]  Josef Paldus,et al.  Simultaneous handling of dynamical and nondynamical correlation via reduced multireference coupled cluster method: Geometry and harmonic force field of ozone , 1999 .

[14]  U. Safronova,et al.  Perturbation theory in calculations of atomic energy levels , 1975 .

[15]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[16]  R. K. Nesbet,et al.  Self‐Consistent Orbitals for Radicals , 1954 .

[17]  A. Okniński Inequalities for electron repulsion integrals , 1974 .

[18]  P. Gill,et al.  Invariance of the correlation energy at high density and large dimension in two-electron systems. , 2010, Physical review letters.

[19]  Henry F. Schaefer,et al.  Large multiconfiguration self-consistent-field wave functions for the ozone molecule , 1981 .

[20]  M. Ivanov Hartree-Fock calculation of the 1s22s2 state of the Be atom in external magnetic fields from γ = 0 up to γ = 1000 , 1998 .

[21]  Donald G. Truhlar,et al.  Valence bond theory for chemical dynamics , 2007, J. Comput. Chem..

[22]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[23]  P. Löwdin Correlation Problem in Many‐Electron Quantum Mechanics I. Review of Different Approaches and Discussion of Some Current Ideas , 2007 .

[24]  A.M.K. Müller,et al.  Explicit approximate relation between reduced two- and one-particle density matrices , 1984 .

[25]  John A. Pople,et al.  Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory , 1977 .

[26]  J. Pople,et al.  Correlation energies for AH n molecules and cations , 1975 .

[27]  C. F. Bunge Accurate determination of the total electronic energy of the Be ground state , 1976 .

[28]  D. L. Cooper,et al.  Universal systematic sequences of even‐tempered basis functions in electronic structure studies of negative ions , 1982 .

[29]  Intracule functional models. IV. Basis set effects. , 2009, The Journal of chemical physics.

[30]  Michael W. Schmidt,et al.  Effective convergence to complete orbital bases and to the atomic Hartree–Fock limit through systematic sequences of Gaussian primitives , 1979 .

[31]  K. Andersson,et al.  Vibrational frequencies of ozone : a multiconfigurational approach , 1992 .

[32]  K. Ruedenberg,et al.  Electron Correlation and Augmented Separated‐Pair Expansion in Berylliumlike Atomic Systems , 1968 .

[33]  N. Handy,et al.  Dynamical and Nondynamical Correlation , 1996 .

[34]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[35]  H. Shull,et al.  ELECTRONIC CORRELATION ENERGY IN 3- AND 4- ELECTRON ATOMS. Technical Note No. 32 , 1959 .

[36]  Enrico Clementi,et al.  Correlation Energy in Atomic Systems. IV. Degeneracy Effects , 1966 .

[37]  Intracule functional models. Part III. The dot intracule and its Fourier transform. , 2008, Physical chemistry chemical physics : PCCP.

[38]  R. Bradley Rates of evaporation IV. The rate of evaporation and vapour pressure of rhombic sulphur , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  James S. Sims,et al.  Combined Configuration-Interaction—Hylleraas-Type Wave-Function Study of the Ground State of the Beryllium Atom , 1971 .

[40]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[41]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[42]  M. Piris,et al.  Assessment of a new approach for the two-electron cumulant in natural-orbital-functional theory. , 2005, The Journal of chemical physics.

[43]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[44]  N. Ostlund Complex and Unrestricted Hartree‐Fock Wavefunctions , 1972 .

[45]  Peter M W Gill,et al.  A family of intracules, a conjecture and the electron correlation problem. , 2006, Physical chemistry chemical physics : PCCP.

[46]  P. Gill,et al.  Correlation energy of two electrons in the high-density limit. , 2009, The Journal of chemical physics.

[47]  P. Gill,et al.  Benchmark correlation energies for small molecules , 2005 .

[48]  Jacek Komasa,et al.  Benchmark energy calculations on Be-like atoms , 2002 .

[49]  Peter M W Gill,et al.  Intracule functional models. II. Analytically integrable kernels. , 2007, The Journal of chemical physics.

[50]  E. V. Ludeña,et al.  Assessment of dynamical and nondynamical correlation energy components for the beryllium-atom isoelectronic sequence , 1999 .