Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient. The representation of hand gestures is critical for recognition. In this paper, we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition. The depth maps of hand gestures captured via the Kinect sensors are used in our method, where the 3D hand shapes can be segmented from the cluttered backgrounds. To extract the pattern of salient 3D shape features, we propose a new descriptor –3D Shape Context, for 3D hand gesture representation. The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition. The description of all the 3D points constructs the hand gesture representation, and hand gesture recognition is explored via dynamic time warping algorithm. Extensive experiments are conducted on multiple benchmark datasets. The experimental results verify that the proposed method is robust to noise, articulated variations, and rigid transformations. Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.