Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation.

The lymphatic vascular system is important for immune surveillance, tissue fluid homeostasis and fat absorption, and is involved in many pathological processes, including tumor metastasis and lymphedema. The recent success in the isolation of lymphatic endothelial cells has shed light on their molecular characteristics. Lymphatic commitment and growth during embryonic development is dependent on the activities of the homeodomain transcription factor Prox-1 and vascular endothelial growth factor-C (VEGF-C). VEGF-C and VEGF-D are involved in adult inflammation-associated lymphangiogenesis, wound healing and tumor metastasis. Administration of lymphangiogenic growth factors or their antagonists provides the possibility of targeting lymphatic vessels in human disease.

[1]  K. Devriendt,et al.  Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. , 2003, American journal of human genetics.

[2]  M. Dana,et al.  Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. , 2003, The American journal of pathology.

[3]  M. Dana,et al.  Draining Lymph Nodes Play an Essential Role in Alloimmunity Generated in Response to High-Risk Corneal Transplantation , 2002, Cornea.

[4]  Marlys H Witte,et al.  FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. , 2003, Human molecular genetics.

[5]  F. Sabin On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig , 1902 .

[6]  H. Augustin,et al.  Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  J. Sleeman,et al.  Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. , 2003, Cancer research.

[8]  E. Tschachler,et al.  Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. , 1999, The American journal of pathology.

[9]  Tarik Tihan,et al.  The hypoxic response of tumors is dependent on their microenvironment. , 2003, Cancer cell.

[10]  K. Alitalo,et al.  VEGF‐C and VEGF‐D expression in neuroendocrine cells and their receptor, VEGFR‐3, in fenestrated blood vessels in human tissues , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  Robert E. Ferrell,et al.  Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema , 2000, Nature Genetics.

[12]  M. Karkkainen,et al.  The Specificity of Receptor Binding by Vascular Endothelial Growth Factor-D Is Different in Mouse and Man* , 2001, The Journal of Biological Chemistry.

[13]  K. Alitalo,et al.  VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. , 1997, Developmental biology.

[14]  R. Kauppinen,et al.  A model for gene therapy of human hereditary lymphedema , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  K. Alitalo,et al.  Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. , 1998, The American journal of pathology.

[16]  P. Heikkilä,et al.  Mannose receptor (MR) and common lymphatic endothelial and vascular endothelial receptor (CLEVER)-1 direct the binding of cancer cells to the lymph vessel endothelium. , 2003, Cancer research.

[17]  T. Libermann,et al.  Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. , 2003, The American journal of pathology.

[18]  VEGF receptor signal transduction. , 2003, Science's STKE : signal transduction knowledge environment.

[19]  R. Jain,et al.  During angiogenesis, vascular endothelial growth factor regulate natural killer cell adhesion to tumor endothelium , 1996, Nature Medicine.

[20]  S. Oliviero,et al.  β-Catenin Inversely Regulates Vascular Endothelial Growth Factor-D mRNA Stability* , 2003, Journal of Biological Chemistry.

[21]  T. Veikkola,et al.  Signalling via vascular endothelial growth factor receptor‐3 is sufficient for lymphangiogenesis in transgenic mice , 2001, The EMBO journal.

[22]  P. Campochiaro,et al.  Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. , 2002, Developmental cell.

[23]  R. Kauppinen,et al.  VEGF-D Is the Strongest Angiogenic and Lymphangiogenic Effector Among VEGFs Delivered Into Skeletal Muscle via Adenoviruses , 2003, Circulation research.

[24]  M. Karkkainen,et al.  Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. , 2001, Cancer research.

[25]  S. Hirakawa,et al.  Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[26]  K. Alitalo,et al.  Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to two VEGF receptors. , 1994, Oncogene.

[27]  S. Hirohashi,et al.  Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[28]  E C Nice,et al.  Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF‐C/D receptor VEGFR‐3 , 2001, The EMBO journal.

[29]  Thomas Hawighorst,et al.  Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis , 2001, Nature Medicine.

[30]  M. Detmar,et al.  The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. , 2002, Genes & development.

[31]  Yihai Cao,et al.  Proteolytic processing regulates receptor specificity and activity of VEGF‐C , 1997, The EMBO journal.

[32]  K. Alitalo,et al.  Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. , 2002, The American journal of pathology.

[33]  P. Streeter,et al.  The influence of afferent lymphatic vessel interruption on vascular addressin expression , 1991, The Journal of cell biology.

[34]  L. Orci,et al.  Vascular endothelial growth factor‐C‐mediated lymphangiogenesis promotes tumour metastasis , 2001, The EMBO journal.

[35]  J. Kurebayashi,et al.  Expression of Vascular Endothelial Growth Factor (VEGF) Family Members in Breast Cancer , 1999, Japanese journal of cancer research : Gann.

[36]  Seppo Ylä-Herttuala,et al.  Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3 , 2001, Nature Medicine.

[37]  B. Saesseli,et al.  Diameters of lymphatic capillaries in patients with different forms of primary lymphedema. , 1990, Lymphology.

[38]  E. Manseau,et al.  Vascular Permeability Factor/Vascular Endothelial Growth Factor Induces Lymphangiogenesis as well as Angiogenesis , 2002, The Journal of experimental medicine.

[39]  A. Bollinger,et al.  Aplasia of superficial lymphatic capillaries in hereditary and connatal lymphedema (Milroy's disease). , 1983, Lymphology.

[40]  L. Coussens,et al.  Inflammation and cancer , 2002, Nature.

[41]  K. Alitalo,et al.  Net‐targeted mutant mice develop a vascular phenotype and up‐regulate egr‐1 , 2001, The EMBO journal.

[42]  Jingtai Cao,et al.  VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. , 2004, The Journal of clinical investigation.

[43]  K. Alitalo,et al.  Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. , 2002, Journal of the National Cancer Institute.

[44]  K. Alitalo,et al.  Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. , 2000, The American journal of pathology.

[45]  Y. Yoon,et al.  VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. , 2003, The Journal of clinical investigation.

[46]  Lena Claesson-Welsh,et al.  Ligand-induced Vascular Endothelial Growth Factor Receptor-3 (VEGFR-3) Heterodimerization with VEGFR-2 in Primary Lymphatic Endothelial Cells Regulates Tyrosine Phosphorylation Sites* , 2003, Journal of Biological Chemistry.

[47]  K. Alitalo,et al.  Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia , 1997, Oncogene.

[48]  Y. Maehara,et al.  Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues , 2000, British Journal of Cancer.

[49]  D. Kerjaschki,et al.  Isolation and Characterization of Dermal Lymphatic and Blood Endothelial Cells Reveal Stable and Functionally Specialized Cell Lineages , 2001, The Journal of experimental medicine.

[50]  Erkki Ruoslahti,et al.  A tumor-homing peptide with a targeting specificity related to lymphatic vessels , 2002, Nature Medicine.

[51]  R. F. Dale The inheritance of primary lymphoedema. , 1985, Journal of medical genetics.

[52]  R. Jain,et al.  Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. , 1997, Science.

[53]  E. Keshet,et al.  Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis , 1992, Nature.

[54]  K. Alitalo,et al.  Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Robert V Farese,et al.  Fatal Bilateral Chylothorax in Mice Lacking the Integrin α9β1 , 2000, Molecular and Cellular Biology.

[56]  J. Groopman,et al.  Stimulation of β1 Integrin Induces Tyrosine Phosphorylation of Vascular Endothelial Growth Factor Receptor-3 and Modulates Cell Migration* , 2001, The Journal of Biological Chemistry.

[57]  T. Veikkola,et al.  Vascular Endothelial Growth Factor-C Stimulates the Migration and Proliferation of Kaposi’s Sarcoma Cells* , 1999, The Journal of Biological Chemistry.

[58]  K. Alitalo,et al.  Metastasis: Lymphangiogenesis and cancer metastasis , 2002, Nature Reviews Cancer.

[59]  M. Karkkainen,et al.  Abnormal lymphatic vessel development in neuropilin 2 mutant mice. , 2002, Development.

[60]  J. Partanen,et al.  Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins , 2004, Nature Immunology.

[61]  M. Skobe,et al.  Therapeutic lymphangiogenesis with human recombinant VEGF‐C , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[62]  A. Mantovani,et al.  Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. , 1996, Blood.

[63]  M. Detmar,et al.  An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype , 2002, The EMBO journal.

[64]  H. Dvorak,et al.  T1α/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema , 2003, The EMBO journal.

[65]  K. Devriendt,et al.  Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. , 2000, American journal of human genetics.

[66]  M. Skobe,et al.  Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. , 2001, The American journal of pathology.

[67]  H. Hoyme,et al.  Phenotypic and genotypic heterogeneity in familial Milroy lymphedema. , 1998, Lymphology.

[68]  K. Alitalo,et al.  Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Skobe,et al.  Molecular characterization of lymphatic endothelial cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  K. Alitalo,et al.  Proinflammatory Cytokines Regulate Expression of the Lymphatic Endothelial Mitogen Vascular Endothelial Growth Factor-C* , 1998, The Journal of Biological Chemistry.

[71]  M. W. Glynn,et al.  Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. , 2000, American journal of human genetics.

[72]  E. Tschachler,et al.  Lymphatic endothelium and Kaposi's sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. , 1998, Cancer research.

[73]  T. Mcclanahan,et al.  Involvement of chemokine receptors in breast cancer metastasis , 2001, Nature.

[74]  K. Alitalo,et al.  Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox‐1 homeobox transcription factor , 2002, The EMBO journal.

[75]  G. Oliver,et al.  Prox1 Function Is Required for the Development of the Murine Lymphatic System , 1999, Cell.

[76]  K. Alitalo,et al.  Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. , 1998, Science.

[77]  Steven A. Stacker,et al.  VEGF-D promotes the metastatic spread of tumor cells via the lymphatics , 2001, Nature Medicine.

[78]  M. Mildner,et al.  Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. , 1999, Laboratory investigation; a journal of technical methods and pathology.

[79]  T. Veikkola,et al.  Adenoviral VEGF‐C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[80]  R. Moritz,et al.  Biosynthesis of Vascular Endothelial Growth Factor-D Involves Proteolytic Processing Which Generates Non-covalent Homodimers* , 1999, The Journal of Biological Chemistry.

[81]  R. Dana,et al.  The critical role of lymph nodes in corneal alloimmunization and graft rejection. , 2001, Investigative ophthalmology & visual science.

[82]  K. Alitalo,et al.  VEGF‐C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF‐7 tumors , 2002, International journal of cancer.

[83]  M. Witte,et al.  Lymphangiogenesis and lymphangiodysplasia: From molecular to clinical lymphology , 2001, Microscopy research and technique.

[84]  R. Mebius Organogenesis of lymphoid tissues , 2003, Nature reviews. Immunology.

[85]  K. Alitalo,et al.  A Recombinant Mutant Vascular Endothelial Growth Factor-C that Has Lost Vascular Endothelial Growth Factor Receptor-2 Binding, Activation, and Vascular Permeability Activities* , 1998, The Journal of Biological Chemistry.

[86]  Georg Breier,et al.  Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo , 1992, Nature.