Fast CNOT gate via quantum Zeno dynamics

Based on the quantum Zeno dynamics, we propose two approaches for directly implementing a CNOT gate in a cavity QED system instead of constructing it from elementary gates. The first approach works in the decoherence-free subspaces (DFS) due to the quantum Zeno effect, which is robust against cavity decay. Based on the first model, we then propose the second approach which takes advantage of stimulated Raman adiabatic passage (STIRAP) with only six pulses; thus it is insensitive to the atomic spontaneous emission. The two schemes are suitable for different decoherence parameters. The strictly numerical simulation shows that the average gate fidelities for the two methods are relatively high.

[1]  Nicholas A. Peters,et al.  Counterfactual quantum computation through quantum interrogation , 2006, Nature.

[2]  Jeremy L O'Brien,et al.  Measuring two-qubit gates , 2007 .

[3]  Guang-Can Guo,et al.  Implementing a conditional N-qubit phase gate in a largely detuned optical cavity , 2007 .

[4]  Michael G. Moore,et al.  Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits , 2008 .

[5]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[6]  Knight,et al.  Quantum computing using dissipation to remain in a decoherence-free subspace , 2000, Physical review letters.

[7]  Lov K. Grover Quantum Computers Can Search Rapidly by Using Almost Any Transformation , 1998 .

[8]  Siyuan Han,et al.  Simplified realization of two-qubit quantum phase gate with four-level systems in cavity QED , 2004 .

[9]  F. Nori,et al.  Quantum entanglement via two-qubit quantum Zeno dynamics , 2008 .

[10]  Xiao-Qiang Shao,et al.  Swap gate and controlled swap gate based on a single resonant interaction with cavity quantum electrodynamics , 2009 .

[11]  X. Shao,et al.  One-step implementation of a swap gate with coherent-state qubits via atomic ensemble large detuning interaction with two-mode cavity quantum electrodynamics , 2008 .

[12]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[13]  E. Solano,et al.  Quantum phase gate with a selective interaction , 2001, quant-ph/0102052.

[14]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[15]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[16]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[17]  Paolo Facchi,et al.  Chapter 3 Quantum Zeno and inverse quantum Zeno effects , 2001 .

[18]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[19]  J. D. Franson,et al.  Quantum computing using single photons and the Zeno effect , 2004 .

[20]  Photon-loss-tolerant Zeno controlled-SIGN gate , 2006, quant-ph/0612176.

[21]  Quantum logic between atoms inside a high-Q optical cavity , 2002, quant-ph/0209096.

[22]  Wolfgang Ketterle,et al.  Continuous and pulsed quantum zeno effect. , 2006, Physical review letters.

[23]  M. S. Zubairy,et al.  Cavity-QED-based quantum phase gate , 2003 .

[24]  Shi-Biao Zheng,et al.  Quantum logic gates for two atoms with a single resonant interaction , 2005 .

[25]  S. Spillane,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[26]  Sze M. Tan,et al.  A computational toolbox for quantum and atomic optics , 1999 .

[27]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[28]  Zheng-Fu Han,et al.  Realizing quantum controlled phase flip through cavity QED (5 pages) , 2004 .

[29]  E.C.G. Sudarshan,et al.  Quantum Zeno dynamics , 2000 .

[30]  P. Facchi,et al.  Quantum Zeno subspaces. , 2002, Physical review letters.

[31]  S. Deleglise,et al.  Freezing coherent field growth in a cavity by the quantum zeno effect. , 2008, Physical review letters.

[32]  Hayato Goto,et al.  Multiqubit controlled unitary gate by adiabatic passage with an optical cavity , 2004 .

[33]  N. Sangouard,et al.  CNOT gate by adiabatic passage with an optical cavity , 2005 .

[34]  Hiroo Azuma Interaction-free generation of entanglement , 2003 .

[35]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[36]  G. S. Agarwal,et al.  Quantum logic gates using Stark-shifted Raman transitions in a cavity (5 pages) , 2004, quant-ph/0401099.

[37]  Zeno logic gates using microcavities , 2006, quant-ph/0606209.

[38]  Yun-Feng Xiao,et al.  Universal quantum computation in decoherence-free subspace with neutral atoms. , 2006, Physical review letters.

[39]  Richard J. Cook What are Quantum Jumps , 1988 .

[40]  Zheng-Fu Han,et al.  Quantum phase gate in an optical cavity with atomic cloud (4 pages) , 2006 .

[41]  Herzog,et al.  Interaction-free measurement. , 1995, Physical review letters.