A Global High‐Resolution Data Set of Soil Hydraulic and Thermal Properties for Land Surface Modeling

Modeling land surface processes requires complete and reliable soil property information to understand soil hydraulic and heat dynamics and related processes, but currently, there is no data set of soil hydraulic and thermal parameters that can meet this demand for global use. In this study, we propose a fitting approach to obtain the optimal soil water retention parameters from ensemble pedotransfer functions (PTFs), which are evaluated using the global coverage National Cooperative Soil Survey Characterization Database and show better performance for global applications than our original ensemble estimations (median values of PTFs) as done in Dai et al. (2013, https://doi.org/10.1175/JHM‐D‐12‐0149.1). Soil hydraulic conductivities are still estimated as the median values of multiple PTFs, and the results are shown to perform comparably to the estimates from the existing precision‐advanced models. Soil thermal properties are estimated following the schemes identified by Dai et al. (2019a, http://arxiv.org/abs/1908.04579), which evaluated several highly recommended schemes based on their land modeling applications. Using these approaches, we develop two global high‐resolution data sets of soil hydraulic and thermal parameters based on Global Soil Dataset for Earth System Models (GSDE) and SoilGrids soil composition databases. The delivered variables include six basic soil properties, four soil hydraulic parameters in the Campbell (1974, https://doi.org/10.1097/00010694‐197406000‐00001) model, five soil hydraulic parameters in the van Genuchten (1980, https://doi.org/10.2136/sssaj1980.03615995004400050002x) model, and four soil thermal properties. The delivered data sets are available at a 30″ × 30″ geographical spatial resolution and provide four sets of vertical profiles following the resolutions of SoilGrids, Noah‐Land Surface Models (LSM), Joint UK Land Environment Simulator (JULES), and Common Land Model/Community Land Model (CoLM/CLM). The data sets can be used in both regional and global applications.

[1]  Yongjiu Dai,et al.  Evaluation of Soil Thermal Conductivity Schemes for Use in Land Surface Modeling , 2019, Journal of Advances in Modeling Earth Systems.

[2]  M. Schaap,et al.  Estimation of saturated hydraulic conductivity with pedotransfer functions: A review , 2019, Journal of Hydrology.

[3]  Yongjiu Dai,et al.  A review of the global soil property maps for Earth system models , 2019, SOIL.

[4]  Eric F. Wood,et al.  POLARIS Soil Properties: 30‐m Probabilistic Maps of Soil Properties Over the Contiguous United States , 2019, Water Resources Research.

[5]  Yuanyuan Zha,et al.  A High‐Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical Parameterization of a Physically Based Water Retention Model , 2018, Water Resources Research.

[6]  Yongjiu Dai,et al.  A review on the global soil datasets for earth system modeling , 2018 .

[7]  Ying Zhao,et al.  Development and analysis of the Soil Water Infiltration Global database , 2018, Earth System Science Data.

[8]  Candiss O. Williams,et al.  Reevaluating the effects of soil organic matter and other properties on available water-holding capacity using the National Cooperative Soil Survey Characterization Database , 2018, Journal of Soil and Water Conservation.

[9]  Ying Zhao,et al.  Development and analysis of the Soil Water Infiltration Global database , 2018 .

[10]  J. Bouma,et al.  Pedotransfer Functions in Earth System Science: Challenges and Perspectives , 2017 .

[11]  T. Hengl,et al.  3D soil hydraulic database of Europe at 250 m resolution , 2017 .

[12]  T. Hengl,et al.  Soil Property and Class Maps of the Conterminous US at 100 meter Spatial Resolution based on a Compilation of National Soil Point Observations and Machine Learning , 2017, 1705.08323.

[13]  Marcel G. Schaap,et al.  Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3) , 2017 .

[14]  Marvin N. Wright,et al.  SoilGrids250m: Global gridded soil information based on machine learning , 2017, PloS one.

[15]  Michael Herbst,et al.  A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves, link to model result files in NetCDF format , 2017 .

[16]  J.G.B. Leenaars,et al.  WoSIS: providing standardised soil profile data for the world , 2016 .

[17]  Sabine Attinger,et al.  The impact of standard and hard‐coded parameters on the hydrologic fluxes in the Noah‐MP land surface model , 2016 .

[18]  Eric F. Wood,et al.  POLARIS: A 30-meter probabilistic soil series map of the contiguous United States , 2016 .

[19]  X. Meng,et al.  Simulating the role of gravel in freeze–thaw process on the Qinghai–Tibet Plateau , 2017, Theoretical and Applied Climatology.

[20]  G. Tóth,et al.  New generation of hydraulic pedotransfer functions for Europe , 2014, European journal of soil science.

[21]  Randal D. Koster,et al.  An updated treatment of soil texture and associated hydraulic properties in a global land modeling system , 2014 .

[22]  R. Betts,et al.  JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator , 2014 .

[23]  G. Heuvelink,et al.  SoilGrids1km — Global Soil Information Based on Automated Mapping , 2014, PloS one.

[24]  Hua Yuan,et al.  A global soil data set for earth system modeling , 2014 .

[25]  Yadvinder Malhi,et al.  High-resolution hydraulic parameter maps for surface soils in tropical South America , 2013 .

[26]  Xingjie Lu,et al.  An efficient method for global parameter sensitivity analysis and its applications to the Australian community land surface model (CABLE) , 2013 .

[27]  Baoyuan Liu,et al.  Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling , 2013 .

[28]  Weiyue Li,et al.  Development and Analysis , 2013 .

[29]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes , 2011 .

[30]  Indrajeet Chaubey,et al.  Sensitivity and identifiability of stream flow generation parameters of the SWAT model , 2010 .

[31]  H. Merdun Alternative methods in the development of pedotransfer functions for soil hydraulic characteristics , 2010 .

[32]  M. S. M. Amin,et al.  Pedo-transfer function for saturated hydraulic conductivity of lowland paddy soils , 2009, Paddy and Water Environment.

[33]  Diederik Jacques,et al.  Multimodel Simulation of Water Flow in a Field Soil Using Pedotransfer Functions , 2009 .

[34]  Mathieu Javaux,et al.  Revisiting Vereecken Pedotransfer Functions: Introducing a Closed‐Form Hydraulic Model , 2009 .

[35]  Eric F. Wood,et al.  An efficient calibration method for continental‐scale land surface modeling , 2008 .

[36]  K. Davis,et al.  Sensitivity, uncertainty and time dependence of parameters in a complex land surface model , 2008 .

[37]  H. Velthuizen,et al.  Harmonized World Soil Database (version 1.2) , 2008 .

[38]  Bart Nijssen,et al.  Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model , 2007 .

[39]  ESTIMATION OF SATURATED HYDRAULIC CONDUCTIVITY ON THE BASIS OF DRAINAGE POROSITY , 2007 .

[40]  Walter J. Rawls,et al.  Field‐Scale Water Flow Simulations Using Ensembles of Pedotransfer Functions for Soil Water Retention , 2006 .

[41]  P. Arp,et al.  Modeling soil thermal conductivities over a wide range of conditions , 2005 .

[42]  Marc Van Meirvenne,et al.  Comparison of Unimodal Analytical Expressions for the Soil-Water Retention Curve , 2005 .

[43]  Gerd Schädler,et al.  Comparison of Soil Hydraulic Parameterizations for Mesoscale Meteorological Models , 2005 .

[44]  J. Dijkshoorn,et al.  Update of the 1:5 million Soil and Terrain Database for Latin America and the Caribbean (SOTERLAC; version 2.0) , 2005 .

[45]  M. Julià,et al.  Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction , 2004 .

[46]  J. Tomasella,et al.  Pedotransfer functions for tropical soils , 2004 .

[47]  S. P. Neuman,et al.  Maximum likelihood Bayesian averaging of uncertain model predictions , 2003 .

[48]  R. Dickinson,et al.  The Common Land Model , 2003 .

[49]  M. G. Hodnett,et al.  Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils , 2002 .

[50]  M. Schaap,et al.  ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions , 2001 .

[51]  Marcel G. Schaap,et al.  Description of the unsaturated soil hydraulic database UNSODA version 2.0 , 2001 .

[52]  Walter J. Rawls,et al.  Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics , 2001 .

[53]  Joe T. Ritchie,et al.  Estimating Saturated Hydraulic Conductivity from Soil Porosity , 2001 .

[54]  Thomas J. Jackson,et al.  Estimating soil water‐holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions , 2000 .

[55]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[56]  T. Mayr,et al.  Pedotransfer functions to estimate soil water retention parameters for a modified Brooks-Corey type model , 1999 .

[57]  J. Wösten,et al.  Development and use of a database of hydraulic properties of European soils , 1999 .

[58]  Yaping Shao,et al.  On the Choice of Soil Hydraulic Models in Land-Surface Schemes , 1999 .

[59]  Eric F. Wood,et al.  The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes and Temperatures , 1998 .

[60]  Javier Tomasella,et al.  Estimating soil water retention characteristics from limited data in Brazilian Amazonia , 1998 .

[61]  Douglas A. Miller,et al.  A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate and Hydrology Modeling , 1998 .

[62]  K. Kosugi Lognormal Distribution Model for Unsaturated Soil Hydraulic Properties , 1996 .

[63]  Hanoch Lavee,et al.  Rock fragments in top soils: significance and processes , 1994 .

[64]  Ken'ichirou Kosugi,et al.  Three‐parameter lognormal distribution model for soil water retention , 1994 .

[65]  Robert S. Webb,et al.  Specifying land surface characteristics in general circulation models: Soil profile data set and derived water‐holding capacities , 1993 .

[66]  J. D. Jabro,et al.  Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data , 1992 .

[67]  J. Feyen,et al.  ESTIMATING UNSATURATED HYDRAULIC CONDUCTIVITY FROM EASILY MEASURED SOIL PROPERTIES , 1990 .

[68]  D. K. Cassel,et al.  EVALUATION OF SPATIAL DISTRIBUTION OF HYDRAULIC CONDUCTIVITY USING EFFECTIVE POROSITY DATA , 1989 .

[69]  W. Rawls,et al.  Estimation of Soil Water Retention and Hydraulic Properties , 1989 .

[70]  R. Carsel,et al.  Developing joint probability distributions of soil water retention characteristics , 1988 .

[71]  A. Henderson‐sellers,et al.  A global archive of land cover and soils data for use in general circulation climate models , 1985 .

[72]  Gaylon S. Campbell,et al.  Soil physics with BASIC :transport models for soil-plant systems , 1985 .

[73]  G. Hornberger,et al.  A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils , 1984 .

[74]  W. J. Rawls,et al.  Agricultural Management Effects on Soil Water Processes Part I: Soil Water Retention and Green and Ampt Infiltration Parameters , 1983 .

[75]  D. L. Brakensiek,et al.  Estimation of Soil Water Properties , 1982 .

[76]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[77]  W. E. Larson,et al.  Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density , 1979 .

[78]  G. Hornberger,et al.  Empirical equations for some soil hydraulic properties , 1978 .

[79]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[80]  Gaylon S. Campbell,et al.  A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA , 1974 .

[81]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[82]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[83]  A. Gemant The Thermal Conductivity of Soils , 1950 .

[84]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .