Context-specific graphical models for discrete longitudinal data

Ron et al. (1998) introduced a rich family of models for discrete longitudinal data called acyclic probabilistic finite automata. These may be represented as directed graphs that embody context-specific conditional independence relations. Here, the approach is developed from a statistical perspective. It is shown here that likelihood ratio tests may be constructed using standard contingency table methods, a model selection procedure that minimizes a penalized likelihood criterion is described, and a way to extend the models to incorporate covariates is proposed. The methods are applied to a small-scale dataset. Finally, it is shown that the models generalize certain subclasses of conventional undirected and directed graphical models.

[1]  Jim Q. Smith,et al.  Conditional independence and chain event graphs , 2008, Artif. Intell..

[2]  Simon Cawley,et al.  HMM sampling and applications to gene finding and alternative splicing , 2003, ECCB.

[3]  H. Akaike A new look at the statistical model identification , 1974 .

[4]  Pierre Dupont,et al.  Smoothing Probabilistic Automata: An Error-Correcting Approach , 2000, ICGI.

[5]  Jukka Corander,et al.  Labelled Graphical Models , 2003 .

[6]  Søren Højsgaard,et al.  Split models for contingency tables , 2003, Comput. Stat. Data Anal..

[7]  L. M. Barclay,et al.  Chain Event Graphs for Informed Missingness , 2014 .

[8]  Akimichi Takemura,et al.  Hierarchical subspace models for contingency tables , 2009, J. Multivar. Anal..

[9]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[10]  D. Dockery,et al.  Passive smoking, gas cooking, and respiratory health of children living in six cities. , 2015, The American review of respiratory disease.

[11]  Jim Q. Smith,et al.  Refining a Bayesian Network using a Chain Event Graph , 2013, Int. J. Approx. Reason..

[12]  Jim Q. Smith,et al.  Propagation using Chain Event Graphs , 2008, UAI.

[13]  Manfred Jaeger,et al.  Probabilistic Decision Graphs - Combining Verification And Ai Techniques For Probabilistic Inference , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[14]  Michael I. Jordan Graphical Models , 2003 .

[15]  Tze-Yun Leong,et al.  A Dynamic Programming Algorithm for Learning Chain Event Graphs , 2013, Discovery Science.

[16]  Jim Q. Smith,et al.  A Separation Theorem for Chain Event Graphs , 2015, ArXiv.

[17]  Francisco Casacuberta,et al.  Probabilistic finite-state machines - part I , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Olga G. Troyanskaya,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm332 Data and text mining , 2022 .

[19]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[20]  B. Browning,et al.  Efficient multilocus association testing for whole genome association studies using localized haplotype clustering , 2007, Genetic epidemiology.

[21]  Jim Q. Smith,et al.  Bayesian MAP model selection of chain event graphs , 2009, J. Multivar. Anal..

[22]  Poul Svante Eriksen,et al.  Decomposable log-linear models , 2005 .

[23]  N. Laird,et al.  A likelihood-based method for analysing longitudinal binary responses , 1993 .

[24]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[25]  Jim Q. Smith,et al.  The causal manipulation and Bayesian estimation of chain event graphs , 2005 .

[26]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[27]  Jim Q. Smith,et al.  Embellishing a Bayesian Network using a Chain Event Graph , 2012 .

[28]  Søren Højsgaard,et al.  Statistical Inference in Context Specific Interaction Models for Contingency Tables , 2004 .

[29]  Graham J. Wills,et al.  Introduction to graphical modelling , 1995 .

[30]  Jim Q. Smith,et al.  The Geometry of Causal Probability Trees that are Algebraically Constrained , 2009 .

[31]  David Edwards,et al.  Modelling discrete longitudinal data using acyclic probabilistic finite automata , 2015, Comput. Stat. Data Anal..

[32]  John W. McDonald,et al.  Marginal regression analysis of a multivariate binary response , 1995 .

[33]  Jim Q. Smith,et al.  Causal analysis with Chain Event Graphs , 2010, Artif. Intell..

[34]  I. Solis-Trapala A likelihood based method for analysing overdispersed correlated count data with subject specific covariates , 2007 .

[35]  P. Diggle Analysis of Longitudinal Data , 1995 .

[36]  Baptiste Jeudy,et al.  Efficient Pruning of Probabilistic Automata , 2008, SSPR/SPR.

[37]  Robert G. Cowell,et al.  Causal discovery through MAP selection of stratified chain event graphs , 2014 .