Monitoring of Intercalation Stages in Lithium-Ion Cells over Charge-Discharge Cycles with Fiber Optic Sensors

[1]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[2]  Robert Kostecki,et al.  Surface structural disordering in graphite upon lithium intercalation/deintercalation , 2010, 1108.0846.

[3]  Amartya Mukhopadhyay,et al.  Deformation and stress in electrode materials for Li-ion batteries , 2014 .

[4]  Xiao‐Qing Yang,et al.  In Situ Synchrotron X‐Ray Diffraction Studies of the Phase Transitions in Li x Mn2 O 4 Cathode Materials , 1999 .

[5]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[6]  Gangbing Song,et al.  Recent applications of fiber optic sensors to health monitoring in civil engineering , 2004 .

[7]  Jasim Ahmed,et al.  Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.

[8]  Anurag Ganguli,et al.  Embedded Fiber Optic Sensing for Accurate State Estimation in Advanced Battery Management Systems , 2014 .

[9]  Petr Novák,et al.  A Dilatometric Study of Lithium Intercalation into Powder-Type Graphite Electrodes , 2008 .

[10]  G. Ceder,et al.  In-Situ X-ray Absorption Spectroscopic Study on Variation of Electronic Transitions and Local Structure of LiNi1/3Co1/3Mn1/3O2 Cathode Material during Electrochemical Cycling , 2005 .

[11]  P. Kiesel,et al.  Embedded Fiber Optic Sensors for In Situ and In-Operando Monitoring of Advanced Batteries , 2015 .

[12]  Jae-Hyun Lee,et al.  Battery dimensional changes occurring during charge/discharge cycles—thin rectangular lithium ion and polymer cells , 2003 .

[13]  Doron Aurbach,et al.  The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li x MO y Host Materials (M = Ni, Mn) , 2000 .

[14]  Anna G. Stefanopoulou,et al.  Neutron Imaging of Lithium Concentration in LFP Pouch Cell Battery , 2011 .

[15]  Anurag Ganguli,et al.  Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors , 2015 .

[16]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[17]  Ningxin Zhang,et al.  Dissecting anode swelling in commercial lithium-ion batteries , 2012 .

[18]  Stephen J. Harris,et al.  In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction , 2013 .

[19]  Yoshitsugu Sone,et al.  Understanding Volume Change in Lithium-Ion Cells during Charging and Discharging Using In Situ Measurements , 2007 .

[20]  Craig B. Arnold,et al.  Stress evolution and capacity fade in constrained lithium-ion pouch cells , 2014 .

[21]  M. Verbrugge,et al.  Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses , 2010 .

[22]  Eric Udd,et al.  Fiber optic distributed sensing systems for harsh aerospace environments , 1999, Smart Structures.