A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions

We present numerical simulations which support the formal asymptotic analysis relating a multiorder parameter Allen--Cahn system to a multiphase interface problem with curvature-dependent evolution of the interfaces and angle conditions at triple junctions. Within the gradient energy of the Allen--Cahn system, the normal to an interface between phases i and j is modeled by the irreducible representations $(u_i\nabla u_j - u_j\nabla u_i)/{|u_i\nabla u_j - u_j\nabla u_i|}$, where ui and uj are the ith and jth components of the vectorial order parameter $\bu\in \rz^N$.In the vectorial case, the dependence of the limiting surface tensions and mobilities on the bulk potentials of the Allen--Cahn system is not given explicitly but in terms of all the N components of the planar stationary wave solutions. One of the issues of this paper is to find bulk potentials which allow a rather easy access to the resulting surface tensions and mobilities. We compare numerical computations for planar and circular phase bound...

[1]  Michelle Schatzman,et al.  Geometrical evolution of developed interfaces , 1995, Emerging applications in free boundary problems.

[2]  J. Keller,et al.  Fast reaction, slow diffusion, and curve shortening , 1989 .

[3]  Geoffrey B. McFadden,et al.  Phase-field model for solidification of a eutectic alloy , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Barbara Stoth,et al.  A sharp interface limit of the phase field equations: one-dimensional and axisymmetric , 1996, European Journal of Applied Mathematics.

[5]  Chen,et al.  Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics. , 1994, Physical review. B, Condensed matter.

[6]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[7]  L. Bronsard,et al.  A numerical method for tracking curve networks moving with curvature motion , 1995 .

[8]  P. Sternberg Vector-Valued Local Minimizers of Nonconvex Variational Problems , 1991 .

[9]  H. Soner,et al.  Three-phase boundary motions under constant velocities. I: The vanishing surface tension limit , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  H. Mete Soner Convergence of the phase-field equations to the mullins-sekerka problem with kinetic undercooling , 1995 .

[11]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[12]  L R B Elton,et al.  Lehrbuch Der Theoretischen Physik , 1960 .

[13]  Harald Garcke,et al.  A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  G. B. McFadden,et al.  On the notion of a ξ–vector and a stress tensor for a general class of anisotropic diffuse interface models , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Harald Garcke,et al.  On anisotropic order parameter models for multi-phase system and their sharp interface limits , 1998 .

[16]  L. Bronsard,et al.  On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation , 1993 .

[17]  Charles M. Elliott,et al.  `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .

[18]  Danan Fan,et al.  Diffuse-interface description of grain boundary motion , 1997 .

[19]  I. Steinbach,et al.  A phase field concept for multiphase systems , 1996 .

[20]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[21]  Harald Garcke,et al.  A singular limit for a system of degenerate Cahn-Hilliard equations , 2000, Advances in Differential Equations.

[22]  Fernando Reitich,et al.  Three-phase boundary motions under constant velocities. , 1994 .

[23]  Halil Mete Soner,et al.  Convergence of the phase-field equations to the mullins-sekerka problem with kinetic undercooling , 1995 .

[24]  Sigurd B. Angenent,et al.  Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface , 1989 .

[25]  G. Caginalp,et al.  Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. , 1989, Physical review. A, General physics.

[26]  Britta Nestler,et al.  A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures , 2000 .

[27]  Britta Nestler,et al.  Anisotropic multi-phase-field model: Interfaces and junctions , 1998 .

[28]  Elizabeth A. Holm,et al.  Modeling Microstructural Evolution in Two-Dimensional Two-Phase Microstructures , 1992 .

[29]  Maurizio Paolini,et al.  A Dynamic Mesh Algorithm for Curvature Dependent Evolving Interfaces , 1996 .

[30]  Morton E. Gurtin,et al.  Multiphase thermomechanics with interfacial structure , 1990 .

[31]  James F. Blowey,et al.  Curvature Dependent Phase Boundary Motion and Parabolic Double Obstacle Problems , 1993 .