An Arbitrary-Order Discontinuous Galerkin Method with One Unknown Per Element

We propose an arbitrary-order discontinuous Galerkin method for second-order elliptic problem on general polygonal mesh with only one degree of freedom per element. This is achieved by locally solving a discrete least-squares over a neighboring element patch. Under a geometrical condition on the element patch, we prove an optimal a priori error estimates in the energy norm and in the $$\hbox {L}^2$$L2 norm. The accuracy and the efficiency of the method up to order six on several polygonal meshes are illustrated by a set of benchmark problems.

[1]  Zhimin Zhang,et al.  A $$C^0$$C0 Linear Finite Element Method for Biharmonic Problems , 2018, J. Sci. Comput..

[2]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[3]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[4]  Qingsong Zou,et al.  A $C^0$ linear finite element method for two fourth-order eigenvalue problems , 2016 .

[5]  David O'Sullivan,et al.  Exploring Spatial Process Dynamics Using Irregular Cellular Automaton Models , 2010 .

[6]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[7]  Kenji Shimada,et al.  Converting a tetrahedral mesh to a prism-tetrahedral hybrid mesh for FEM accuracy and efficiency , 2008, SPM '08.

[8]  Stefano Giani,et al.  hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..

[9]  Barry Hilary Valentine Topping,et al.  Three node triangular bending elements with one degree of freedom per node , 1992 .

[10]  Igor Mozolevski,et al.  A Priori Error Analysis for the hp-Version of the Discontinuous Galerkin Finite Element Method for the Biharmonic Equation , 2003 .

[11]  Junping Wang,et al.  Interior penalty discontinuous Galerkin method on very general polygonal and polyhedral meshes , 2012, J. Comput. Appl. Math..

[12]  Mats G. Larson,et al.  A posteriori eror estimation for higher order Godunov finite volume methods on unstructured meshes , 2002 .

[13]  D. Wilhelmsen,et al.  A Markov inequality in several dimensions , 1974 .

[14]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[15]  Miguel Cervera,et al.  Derivation of thin plate bending elements with one degree of freedom per node , 1993 .

[16]  Mats G. Larson,et al.  Continuous piecewise linear finite elements for the Kirchhoff–Love plate equation , 2012, Numerische Mathematik.

[17]  M. Urner Scattered Data Approximation , 2016 .

[18]  Holger Wendland,et al.  Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , 2004, Math. Comput..

[19]  Shai Dekel,et al.  The Bramble-Hilbert Lemma for Convex Domains , 2004, SIAM J. Math. Anal..

[20]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[21]  G. Burton Sobolev Spaces , 2013 .

[22]  Ruo Li,et al.  Solving Eigenvalue Problems in a Discontinuous Approximation Space by Patch Reconstruction , 2019, SIAM J. Sci. Comput..

[23]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[24]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[25]  C. R. Calladine,et al.  A simple class of finite elements for plate and shell problems. II: An element for thin shells, with only translational degrees of freedom , 1992 .

[26]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[27]  Alessandro Colombo,et al.  Agglomeration-based physical frame dG discretizations: An attempt to be mesh free , 2014 .

[28]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[29]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[30]  P. Ming,et al.  A Discontinuous Galerkin Method by Patch Reconstruction for Biharmonic Problem , 2017, Journal of Computational Mathematics.

[31]  Seizo Tanaka,et al.  Discontinuous Galerkin Methods with Nodal and Hybrid Modal/Nodal Triangular, Quadrilateral, and Polygonal Elements for Nonlinear Shallow Water Flow , 2014 .

[32]  Ruo Li,et al.  A finite element method by patch reconstruction for the Stokes problem using mixed formulations , 2018, J. Comput. Appl. Math..

[33]  Paul Houston,et al.  hp-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes , 2016 .

[34]  Ruo Li,et al.  An Efficient High Order Heterogeneous Multiscale Method for Elliptic Problems , 2012, Multiscale Model. Simul..

[35]  Chi-Wang Shu,et al.  A discontinuous Galerkin scheme for front propagation with obstacles , 2014, Numerische Mathematik.

[36]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[37]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[38]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[39]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[40]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[41]  Alexandre Ern,et al.  An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..

[42]  Ivan Yotov,et al.  Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids , 2013, Numerische Mathematik.

[43]  Emmanuil H. Georgoulis,et al.  Recovered finite element methods , 2017, 1705.03649.

[44]  Lothar Reichel On polynomial approximation in the uniform norm by the discrete least squares method , 1986 .

[45]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[46]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[47]  Alessandro Colombo,et al.  Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations , 2012 .

[48]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[49]  Thomas Hagstrom,et al.  On Galerkin difference methods , 2016, J. Comput. Phys..

[50]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .