Efficient algorithms and implementation in exact linear algebra. (Algorithmes et implantations efficaces en algèbre linéaire exacte)
暂无分享,去创建一个
[1] Vincent Neiger,et al. Fast Computation of Shifted Popov Forms of Polynomial Matrices via Systems of Modular Polynomial Equations , 2016, ISSAC.
[2] Arne Storjohann,et al. High-order lifting and integrality certification , 2003, J. Symb. Comput..
[3] Arne Storjohann,et al. Computing hermite forms of polynomial matrices , 2011, ISSAC '11.
[4] Claude-Pierre Jeannerod,et al. Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts , 2016, ISSAC.
[5] Gilles Villard,et al. Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.
[6] Jack J. Dongarra,et al. Automated empirical optimizations of software and the ATLAS project , 2001, Parallel Comput..
[7] Hamza Jeljeli,et al. Accélérateurs logiciels et matériels pour l'algèbre linéaire creuse sur les corps finis. (Hardware and Software Accelerators for Sparse Linear Algebra over Finite Fields) , 2015 .
[8] Erich Kaltofen,et al. Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..
[9] Arnold Schönhage,et al. Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.
[10] J. Hopcroft,et al. Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .
[11] Daniel J. Bernstein,et al. Multidigit Modular Multiplication With The Explicit Chinese Remainder Theorem , 1995 .
[12] Katherine Yelick,et al. OSKI: A library of automatically tuned sparse matrix kernels , 2005 .
[13] Arne Storjohann,et al. The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..
[14] Jean-Guillaume Dumas,et al. Elements of Design for Containers and Solutions in the LinBox Library - Extended Abstract , 2014, ICMS.
[15] Éric Schost,et al. Tellegen's principle into practice , 2003, ISSAC '03.
[16] Jean-Guillaume Dumas,et al. Recursive Double-Size Fixed Precision Arithmetic , 2016, ICMS.
[17] Allan Borodin,et al. Fast Modular Transforms via Division , 1972, SWAT.
[18] Adi Shamir,et al. A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.
[19] Daniel S. Roche. Space- and time-efficient polynomial multiplication , 2009, ISSAC '09.
[20] J. Farkas. Theorie der einfachen Ungleichungen. , 1902 .
[21] Joris van der Hoeven,et al. Faster Polynomial Multiplication over Finite Fields , 2014, J. ACM.
[22] Daniel Apon,et al. Status report on the first round of the NIST post-quantum cryptography standardization process , 2019 .
[23] Joris van der Hoeven,et al. Even faster integer multiplication , 2014, J. Complex..
[24] Éric Schost,et al. Fast Conversion Algorithms for Orthogonal Polynomials , 2008, ArXiv.
[25] Jérémie Detrey,et al. Discrete Logarithm in GF(2809) with FFS , 2014, Public Key Cryptography.
[26] Gilles Villard,et al. Solving sparse rational linear systems , 2006, ISSAC '06.
[27] Joris van der Hoeven,et al. Fast Chinese Remaindering in Practice , 2017, MACIS.
[28] Jean-Guillaume Dumas,et al. Computing the Rank Profile Matrix , 2015, ISSAC.
[29] Emmanuel Thomé. Karatsuba multiplication with temporary space of size ≤ n , 2002 .
[30] Pierrick Gaudry,et al. A gmp-based implementation of schönhage-strassen's large integer multiplication algorithm , 2007, ISSAC '07.
[31] Laurent Imbert,et al. Efficient and Secure Elliptic Curve Point Multiplication Using Double-Base Chains , 2005, ASIACRYPT.
[32] Richard E. Blahut. Transform Techniques for Error Control Codes , 1979, IBM J. Res. Dev..
[33] Clément Pernet,et al. Interactive Certificates for Polynomial Matrices with Sub-Linear Communication , 2018, ArXiv.
[34] Joris van der Hoeven. Relaxed mltiplication using the middle product , 2003, ISSAC.
[35] Lloyd N. Trefethen,et al. An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..
[36] Guillaume Hanrot,et al. The Middle Product Algorithm I , 2004, Applicable Algebra in Engineering, Communication and Computing.
[37] P. L. Montgomery. Modular multiplication without trial division , 1985 .
[38] Rusins Freivalds,et al. Fast Probabilistic Algorithms , 1979, MFCS.
[39] Joris van der Hoeven,et al. Relax, but Don't be Too Lazy , 2002, J. Symb. Comput..
[40] Pascal Giorgi,et al. Relaxing order basis computation , 2014, ACCA.
[41] V. V. Williams. ON SOME FINE-GRAINED QUESTIONS IN ALGORITHMS AND COMPLEXITY , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).
[42] Naofumi Takagi,et al. Bipartite Modular Multiplication Method , 2008, IEEE Transactions on Computers.
[43] Jean-Guillaume Dumas,et al. Generic design of Chinese remaindering schemes , 2010, PASCO.
[44] Éric Schost,et al. Implementations of Efficient Univariate Polynomial Matrix Algorithms and Application to Bivariate Resultants , 2019, ISSAC.
[45] Éric Schost,et al. Power series composition and change of basis , 2008, ISSAC '08.
[46] Oded Regev,et al. On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.
[47] Carl Pomerance,et al. The Development of the Number Field Sieve , 1994 .
[48] Chris Peikert,et al. On Ideal Lattices and Learning with Errors over Rings , 2010, JACM.
[49] Jean-Guillaume Dumas,et al. Memory efficient scheduling of Strassen-Winograd's matrix multiplication algorithm , 2007, ISSAC '09.
[50] Whitfield Diffie,et al. New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.
[51] Erich Kaltofen,et al. On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.
[52] Clément Pernet. High Performance and Reliable Algebraic Computing. (Calcul Algébrique Fiable et Haute Performance) , 2014 .
[53] Oscar H. Ibarra,et al. A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.
[54] Leonard M. Adleman,et al. The function field sieve , 1994, ANTS.
[55] Michael Ben-Or,et al. A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.
[56] Yael Tauman Kalai,et al. Delegating computation: interactive proofs for muggles , 2008, STOC.
[57] Éric Schost,et al. Simultaneous Conversions with the Residue Number System Using Linear Algebra , 2018, ACM Trans. Math. Softw..
[58] Vincent Neiger,et al. Computing Popov and Hermite Forms of Rectangular Polynomial Matrices , 2018, ISSAC.
[59] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.
[60] Jean-Guillaume Dumas,et al. Parallel computation of the rank of large sparse matrices from algebraic K-theory , 2007, PASCO '07.
[61] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[62] Éric Schost,et al. A simple and fast online power series multiplication and its analysis , 2016, J. Symb. Comput..
[63] Endong Wang,et al. Intel Math Kernel Library , 2014 .
[64] Jean-Guillaume Dumas,et al. Matrix Multiplication Over Word-Size Modular Rings Using Approximate Formulas , 2016, ACM Trans. Math. Softw..
[65] Marco Bodrato,et al. Integer and polynomial multiplication: towards optimal toom-cook matrices , 2007, ISSAC '07.
[66] Shmuel Winograd,et al. On multiplication of 2 × 2 matrices , 1971 .
[67] Andrei Alexandrescu,et al. Modern C++ design: generic programming and design patterns applied , 2001 .
[68] Pierrick Gaudry,et al. The mpFq library and implementing curve-based key exchanges , 2007 .
[69] Richard I. Tanaka,et al. Residue arithmetic and its applications to computer technology , 1967 .
[70] Stéphan Thomassé,et al. On the complexity of partial derivatives , 2016, STACS.
[71] Soumojit Sarkar,et al. Triangular x-basis decompositions and derandomization of linear algebra algorithms over K[x] , 2012, J. Symb. Comput..
[72] Allan Borodin,et al. Fast Modular Transforms , 1974, J. Comput. Syst. Sci..
[73] Laurent Imbert,et al. Parallel Modular Multiplication on Multi-core Processors , 2013, 2013 IEEE 21st Symposium on Computer Arithmetic.
[74] S. Cook,et al. ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .
[75] Harvey,et al. Integer multiplication in time O(n log n) , 2021, Annals of Mathematics.
[76] Daniel S. Roche. What Can (and Can't) we Do with Sparse Polynomials? , 2018, ISSAC.
[77] Jean-Guillaume Dumas,et al. Proof-of-work certificates that can be efficiently computed in the cloud , 2018, CASC.
[78] Michael J. Fischer,et al. Fast on-line integer multiplication , 1973, STOC '73.
[79] Pascal Giorgi,et al. Certification of Minimal Approximant Bases , 2018, ISSAC.
[80] Emmanuel Thomé,et al. Subquadratic Computation of Vector Generating Polynomials and Improvement of the Block Wiedemann Algorithm , 2002, J. Symb. Comput..
[81] George Labahn,et al. Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix , 2017, J. Complex..
[82] George Labahn,et al. Shifted normal forms of polynomial matrices , 1999, ISSAC '99.
[83] George Labahn,et al. Normal forms for general polynomial matrices , 2006, J. Symb. Comput..
[84] George Labahn,et al. A deterministic algorithm for inverting a polynomial matrix , 2015, J. Complex..
[85] Martin Fürer. Faster integer multiplication , 2007, STOC '07.
[86] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[87] Tommy Färnqvist. Number Theory Meets Cache Locality – Efficient Implementation of a Small Prime FFT for the GNU Multiple Precision Arithmetic Library , 2005 .
[88] Erich Kaltofen,et al. Interactive certificate for the verification of Wiedemann's Krylov sequence: application to the certification of the determinant, the minimal and the characteristic polynomials of sparse matrices , 2015, ArXiv.
[89] Adhemar Bultheel,et al. A general module theoretic framework for vector M-Padé and matrix rational interpolation , 2005, Numerical Algorithms.
[90] Gabriele Steidl,et al. Fast algorithms for discrete polynomial transforms , 1998, Math. Comput..
[91] David Harvey,et al. An in-place truncated fourier transform and applications to polynomial multiplication , 2010, ISSAC.
[92] D. Coppersmith. Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .
[93] Bruno Grenet,et al. Generic Reductions for In-place Polynomial Multiplication , 2019, ISSAC.
[94] Arnaud Tisserand,et al. Comparison of Modular Arithmetic Algorithms on GPUs , 2009, PARCO.
[95] Joris van der Hoeven,et al. On the complexity of integer matrix multiplication , 2018, J. Symb. Comput..
[96] Bin Li,et al. Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients , 2012, J. Symb. Comput..
[97] Erich Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear systems , 1994, ISSAC '94.
[98] Vincent Neiger,et al. Bases of relations in one or several variables: fast algorithms and applications. (Bases de relations en une ou plusieurs variables : algorithmes rapides et applications) , 2016 .
[99] B. David Saunders,et al. MATRIX RANK CERTIFICATION , 2004 .
[100] L. Bluestein. A linear filtering approach to the computation of discrete Fourier transform , 1970 .
[101] Éric Schost,et al. Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..
[102] Joris van der Hoeven,et al. Modular SIMD arithmetic in Mathemagix , 2014, ACM Trans. Math. Softw..
[103] Joshua R. Wang,et al. Deterministic Time-Space Tradeoffs for k-SUM , 2016, ICALP.
[104] Thom Mulders. On Short Multiplications and Divisions , 2000, Applicable Algebra in Engineering, Communication and Computing.
[105] F. C. Hennie,et al. On-Line Turing Machine Computations , 1966, IEEE Trans. Electron. Comput..
[106] George Labahn,et al. Computing minimal nullspace bases , 2012, ISSAC.
[107] Erich Kaltofen,et al. On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.
[108] Richard J. Lipton,et al. A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..
[109] Arjen K. Lenstra,et al. A heterogeneous computing environment to solve the 768-bit RSA challenge , 2010, Cluster Computing.
[110] Erich Kaltofen,et al. Fifteen years after DSC and WLSS2 what parallel computations I do today: invited lecture at PASCO 2010 , 2010, PASCO.
[111] Sartaj Sahni,et al. Analysis of algorithms , 2000, Random Struct. Algorithms.
[112] Guillaume Hanrot,et al. A long note on Mulders' short product , 2004, J. Symb. Comput..
[113] Jean-Guillaume Dumas,et al. Parallel Computation of Echelon Forms , 2014, Euro-Par.
[114] William B. Hart,et al. Fast Library for Number Theory: An Introduction , 2010, ICMS.
[115] Laurent Imbert,et al. Optimizing elliptic curve scalar multiplication for small scalars , 2009, Optical Engineering + Applications.
[116] Daniel S. Roche,et al. Sparse polynomials in FLINT , 2016, ACCA.
[117] Erich Kaltofen,et al. Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.
[118] G. Villard. A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .
[119] Gilles Villard,et al. Faster inversion and other black box matrix computations using efficient block projections , 2007, ISSAC '07.
[120] Thomas Plantard,et al. Subquadratic Binary Field Multiplier in Double Polynomial System , 2007, SECRYPT.
[121] George Labahn,et al. Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs , 2000, SIAM J. Matrix Anal. Appl..
[122] François Le Gall,et al. Powers of tensors and fast matrix multiplication , 2014, ISSAC.
[123] J. Dicapua. Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.
[124] Erich Kaltofen,et al. Essentially optimal interactive certificates in linear algebra , 2014, ISSAC.
[125] Ramdas Kumaresan,et al. Fast Base Extension Using a Redundant Modulus in RNS , 1989, IEEE Trans. Computers.
[126] Erich Kaltofen,et al. On randomized Lanczos algorithms , 1997, ISSAC.
[127] Robert A. van de Geijn,et al. High-performance implementation of the level-3 BLAS , 2008, TOMS.
[128] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[129] Christophe Soul'e. Perfect forms and the Vandiver conjecture , 1998 .
[130] Claude-Pierre Jeannerod,et al. Fast computation of approximant bases in canonical form , 2018, J. Symb. Comput..
[131] Tolga Acar,et al. Analyzing and comparing Montgomery multiplication algorithms , 1996, IEEE Micro.
[132] Chris Peikert,et al. A Toolkit for Ring-LWE Cryptography , 2013, IACR Cryptol. ePrint Arch..
[133] W. M. Gentleman,et al. Fast Fourier Transforms: for fun and profit , 1966, AFIPS '66 (Fall).
[134] Jean-Guillaume Dumas,et al. Simultaneous computation of the row and column rank profiles , 2013, ISSAC '13.
[135] A. Storjohann. Algorithms for matrix canonical forms , 2000 .
[136] Pascal Giorgi,et al. A probabilistic algorithm for verifying polynomial middle product in linear time , 2018, Inf. Process. Lett..
[137] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[138] Erich Kaltofen,et al. LINBOX: A GENERIC LIBRARY FOR EXACT LINEAR ALGEBRA , 2002 .
[139] Jérémy Berthomieu,et al. Relaxed p-adic Hensel lifting for algebraic systems , 2012, ISSAC.
[140] Joris van der Hoeven,et al. Faster relaxed multiplication , 2014, ISSAC.
[141] V. Strassen. Gaussian elimination is not optimal , 1969 .
[142] Jean-Michel Muller,et al. Modern Computer Arithmetic , 2016, Computer.
[143] Craig Gentry,et al. A fully homomorphic encryption scheme , 2009 .
[144] Romain Lebreton,et al. Relaxed Hensel lifting of triangular sets , 2013, J. Symb. Comput..
[145] Charles L. Lawson,et al. Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.
[146] George Labahn,et al. Efficient algorithms for order basis computation , 2012, J. Symb. Comput..
[147] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[148] Pascal Giorgi,et al. Formal proof for delayed finite field arithmetic using floating point operators , 2007, ArXiv.
[149] Erich Kaltofen,et al. Quadratic-time certificates in linear algebra , 2011, ISSAC '11.
[150] Alexandre Benoit,et al. Algorithmique semi-numérique rapide des séries de Tchebychev. (Fast Semi-numerical Algorithms for Chebyshev Series) , 2012 .
[151] Claude-Pierre Jeannerod,et al. Computing minimal interpolation bases , 2015, J. Symb. Comput..
[152] B. Salvy,et al. Algorithmes Efficaces en Calcul Formel , 2017 .
[153] David Harvey,et al. Faster arithmetic for number-theoretic transforms , 2012, J. Symb. Comput..
[154] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[155] Arne Storjohann. Notes on computing minimal approximant bases , 2006, Challenges in Symbolic Computation Software.
[156] Paul Barrett,et al. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor , 1986, CRYPTO.
[157] Pascal Giorgi,et al. Generating Optimized Sparse Matrix Vector Product over Finite Fields , 2014, ICMS.
[158] Robert D. Silverman,et al. AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM , 1990 .
[159] Joris van der Hoeven,et al. Mathemagix: the quest of modularity and efficiency for symbolic and certified numeric computation? , 2012, ACCA.
[160] Douglas H. Wiedemann. Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.
[161] Joris van der Hoeven,et al. On the bit-complexity of sparse polynomial and series multiplication , 2013, J. Symb. Comput..
[162] Manfred Tasche,et al. Fast Polynomial Multiplication and Convolutions Related to the Discrete Cosine Transform , 1997 .
[163] Christophe Nègre,et al. Multiplication in Finite Fields and Elliptic Curves , 2016 .
[164] Jean-Guillaume Dumas,et al. Recursion based parallelization of exact dense linear algebra routines for Gaussian elimination , 2016, Parallel Comput..
[165] Jean-Guillaume Dumas,et al. Dense Linear Algebra over Finite Fields: the FFLAS and FFPACK packages , 2006, ArXiv.
[166] Joris van der Hoeven,et al. Sparse Polynomial Interpolation in Practice , 2015, ACCA.
[167] Justin Thaler,et al. Time-Optimal Interactive Proofs for Circuit Evaluation , 2013, CRYPTO.
[168] Nigel P. Smart,et al. Parallel cryptographic arithmetic using a redundant Montgomery representation , 2004, IEEE Transactions on Computers.
[169] Amir Shpilka,et al. Complexity Theory Column 88 , 2015, SIGACT News.
[170] Jean-Guillaume Dumas,et al. Exact sparse matrix-vector multiplication on GPU's and multicore architectures , 2010, PASCO.
[171] Joris van der Hoeven,et al. Polynomial Multiplication over Finite Fields in Time \( O(n \log n \) , 2019, J. ACM.
[172] Pascal Giorgi,et al. On Polynomial Multiplication in Chebyshev Basis , 2010, IEEE Transactions on Computers.
[173] T. Izard. Opérateurs Arithmétiques Parallèles pour la Cryptographie Asymétrique , 2011 .
[174] Claude-Pierre Jeannerod,et al. On the complexity of polynomial matrix computations , 2003, ISSAC '03.
[175] Erich Kaltofen,et al. Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields , 1999, Algorithmica.
[176] Nicolas Brisebarre,et al. Chebyshev interpolation polynomial-based tools for rigorous computing , 2010, ISSAC.
[177] Vassil S. Dimitrov,et al. Efficient Quintuple Formulas for Elliptic Curves and Efficient Scalar Multiplication Using Multibase Number Representation , 2007, ISC.
[178] Éric Schost,et al. Power series solutions of singular (q)-differential equations , 2012, ISSAC.
[179] Arjen K. Lenstra,et al. Computation of a 768-Bit Prime Field Discrete Logarithm , 2017, EUROCRYPT.
[180] William J. Turner,et al. A block Wiedemann rank algorithm , 2006, ISSAC '06.
[181] Jean-Guillaume Dumas,et al. Finite field linear algebra subroutines , 2002, ISSAC '02.
[182] Ingrid Verbauwhede,et al. Tripartite modular multiplication , 2011, Integr..
[183] Arjen K. Lenstra,et al. Factorization of a 768-Bit RSA Modulus , 2010, CRYPTO.
[184] M. G. Bruin,et al. A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .
[185] Gilles Villard,et al. Computing the rank and a small nullspace basis of a polynomial matrix , 2005, ISSAC.
[186] Clément Pernet,et al. Faster algorithms for the characteristic polynomial , 2007, ISSAC '07.
[187] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[188] Yiping Cheng. Space-Efficient Karatsuba Multiplication for Multi-Precision Integers , 2016, ArXiv.
[189] Erich Kaltofen,et al. On the complexity of computing determinants , 2001, computational complexity.
[190] Jack Dongarra,et al. Special Issue on Program Generation, Optimization, and Platform Adaptation , 2005, Proc. IEEE.
[191] Claude-Pierre Jeannerod,et al. Rank-profile revealing Gaussian elimination and the CUP matrix decomposition , 2011, J. Symb. Comput..
[192] J. Pollard,et al. The fast Fourier transform in a finite field , 1971 .
[193] Erich Kaltofen,et al. Linear Time Interactive Certificates for the Minimal Polynomial and the Determinant of a Sparse Matrix , 2016, ISSAC.
[194] S. C. Chan,et al. Direct methods for computing discrete sinusoidal transforms , 1990 .
[195] Torben Hagerup,et al. Sorting and Searching on the Word RAM , 1998, STACS.
[196] Claude-Pierre Jeannerod,et al. Essentially optimal computation of the inverse of generic polynomial matrices , 2005, J. Complex..
[197] Wei Zhou,et al. Fast Order Basis and Kernel Basis Computation and Related Problems , 2013 .
[198] Kazutoshi Fujikawa,et al. Fast Modular Arithmetic on the Kalray MPPA-256 Processor for an Energy-Efficient Implementation of ECM , 2017, IEEE Transactions on Computers.
[199] Andrew Arnold,et al. Output-Sensitive Algorithms for Sumset and Sparse Polynomial Multiplication , 2015, ISSAC.
[200] Joris van der Hoeven. New algorithms for relaxed multiplication , 2007, J. Symb. Comput..
[201] Joris van der Hoeven,et al. Lazy multiplication of formal power series , 1997, ISSAC.
[202] David Buchfuhrer,et al. The complexity of Boolean formula minimization , 2008, J. Comput. Syst. Sci..
[203] Jean-Guillaume Dumas,et al. FFPACK: finite field linear algebra package , 2004, ISSAC '04.
[204] Anatolij A. Karatsuba,et al. Multiplication of Multidigit Numbers on Automata , 1963 .
[205] Joris van der Hoeven. The truncated fourier transform and applications , 2004, ISSAC '04.
[206] Tracy Kimbrel,et al. A Probabilistic Algorithm for Verifying Matrix Products Using O(n²) Time and log_2 n + O(1) Random Bits , 1993, Inf. Process. Lett..