Efficient algorithms and implementation in exact linear algebra. (Algorithmes et implantations efficaces en algèbre linéaire exacte)

This "habilitation a diriger des recherches" manuscript concerns the efficiency in exact linear algebra which is the main research area we have been investigating since the beginning of our PhD thesis in 2001. The goal of this document is not to provide an exhaustive list of all our results. We chose to focus only on few major results for which we provide a concise presentation where we emphasize our salient ideas and techniques. To further improve the readability and the understandability of these work, we provide for most of them some introduction of the context giving the main objectives and the existing results of the literature.The first chapter of this manuscript intends to give a larger view on our research activity, our projects and our student supervision. For this, we provide a brief description of our results obtained mainly while being a member of the LIRMM laboratory in the teams ARITH and ECO. We then describe seven articles that have been published in internationally renowned conferences and journals, either through collaborative works or as the only one investi- gator. We would like to take this occasion to thank all our co-authors for these fruitful collaborations. Even if all these articles fit the large context of computer algebra and they embrace the same motivations for improving efficiency, we decided to provide their description within three different chapters according to the main object of study. The chapters 2 and 3 focus on the efficiency of arithmetic for the main objects arising in computer algebra: the univariate polynomials for the first one, and the integers for the second one. Since the major result of Karatsuba in 1962 who showed a subquadratic complexity algorithm for the multiplication, this operation occupies a central role to improve efficiency in computer algebra. Since then many other results have improved the complexity upper bound for this problem while not being able to completely established its complexity yet. We shall mention the very recent result in March 2019 which provides a new upper bound of O(nlog(n)). This finally proves a conjecture which have been proposed almost fifty years ago. Even if all these theoretical results are fundamental, their scope in practice remain nowadays limited to unreachable sizes of instances. Our work is more concerned by the latter point where we do want to improve efficiency of algorithms in practice. For polynomials, we study the multiplication problem for non standard basis (Chebyshev basis) for which we propose both theoretical and practical equivalences with the algorithms available for the classical monomial basis. We also study the question regarding the fast probabilistic verification of polynomial products (full, short and middle) that is highly relevant to delegating computation. Finally, we also consider these operations within the framework of space complexity. In particular, we provide algorithmic reductions that enable a space complexity of O(1) while still offering the best possible asymptotic time complexity. On the integer side, we provide practical improvements for modular multiplication on multi-core machines. In particular, we design a novel approach that aims to minimize the number of synchronizations inherent to fine grained parallel computing. Lastly, we study the conversions between classical binary representation and the multi-modular one. More precisely, we focus on the case where several integers have to be converted simultaneously. There, we provide an algorithm that reduces the complexity to matrix multiplication and that allows to outperform in practice the best asymptotic algorithms on a wide range of values. The last chapter is about the continuation of our PhD studies on efficient linear algebra. In particular, we focus on two aspects of our work. The first one concerns efficient dense linear algebra over prime fields. In particular, we recall our approach that revealed highly efficient in practice that is to combine: delayed modular arithmetic, sub-cubic matrix multiplication a la Strassen and optimized numerical BLAS libraries. We further detail how re-using this approach and our fast conversions with multi-modular integer representation yields one of the fastest code for integer matrix multiplication to date for integers of moderate bit length. The last part of this manuscript is devoted to linear algebra over univariate polynomial rings. We first recall our PhD’s result that demonstrates the first efficient reduction to matrix multiplication for the minimal approximant basis problem. We emphasize the fact that this result has considerably helped to design faster algorithms for linear algebra with univariate polynomials. We also show that extending this result to the model of online computing brings improvement to block Wiedemann type of algorithms where finely integrated early termination has been made possible. Finally, we demonstrate how we’ve been able to provide an optimal certificate that allows an efficient Monte-Carlo verification procedure for minimal approximant basis.

[1]  Vincent Neiger,et al.  Fast Computation of Shifted Popov Forms of Polynomial Matrices via Systems of Modular Polynomial Equations , 2016, ISSAC.

[2]  Arne Storjohann,et al.  High-order lifting and integrality certification , 2003, J. Symb. Comput..

[3]  Arne Storjohann,et al.  Computing hermite forms of polynomial matrices , 2011, ISSAC '11.

[4]  Claude-Pierre Jeannerod,et al.  Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts , 2016, ISSAC.

[5]  Gilles Villard,et al.  Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.

[6]  Jack J. Dongarra,et al.  Automated empirical optimizations of software and the ATLAS project , 2001, Parallel Comput..

[7]  Hamza Jeljeli,et al.  Accélérateurs logiciels et matériels pour l'algèbre linéaire creuse sur les corps finis. (Hardware and Software Accelerators for Sparse Linear Algebra over Finite Fields) , 2015 .

[8]  Erich Kaltofen,et al.  Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..

[9]  Arnold Schönhage,et al.  Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.

[10]  J. Hopcroft,et al.  Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .

[11]  Daniel J. Bernstein,et al.  Multidigit Modular Multiplication With The Explicit Chinese Remainder Theorem , 1995 .

[12]  Katherine Yelick,et al.  OSKI: A library of automatically tuned sparse matrix kernels , 2005 .

[13]  Arne Storjohann,et al.  The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..

[14]  Jean-Guillaume Dumas,et al.  Elements of Design for Containers and Solutions in the LinBox Library - Extended Abstract , 2014, ICMS.

[15]  Éric Schost,et al.  Tellegen's principle into practice , 2003, ISSAC '03.

[16]  Jean-Guillaume Dumas,et al.  Recursive Double-Size Fixed Precision Arithmetic , 2016, ICMS.

[17]  Allan Borodin,et al.  Fast Modular Transforms via Division , 1972, SWAT.

[18]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[19]  Daniel S. Roche Space- and time-efficient polynomial multiplication , 2009, ISSAC '09.

[20]  J. Farkas Theorie der einfachen Ungleichungen. , 1902 .

[21]  Joris van der Hoeven,et al.  Faster Polynomial Multiplication over Finite Fields , 2014, J. ACM.

[22]  Daniel Apon,et al.  Status report on the first round of the NIST post-quantum cryptography standardization process , 2019 .

[23]  Joris van der Hoeven,et al.  Even faster integer multiplication , 2014, J. Complex..

[24]  Éric Schost,et al.  Fast Conversion Algorithms for Orthogonal Polynomials , 2008, ArXiv.

[25]  Jérémie Detrey,et al.  Discrete Logarithm in GF(2809) with FFS , 2014, Public Key Cryptography.

[26]  Gilles Villard,et al.  Solving sparse rational linear systems , 2006, ISSAC '06.

[27]  Joris van der Hoeven,et al.  Fast Chinese Remaindering in Practice , 2017, MACIS.

[28]  Jean-Guillaume Dumas,et al.  Computing the Rank Profile Matrix , 2015, ISSAC.

[29]  Emmanuel Thomé Karatsuba multiplication with temporary space of size ≤ n , 2002 .

[30]  Pierrick Gaudry,et al.  A gmp-based implementation of schönhage-strassen's large integer multiplication algorithm , 2007, ISSAC '07.

[31]  Laurent Imbert,et al.  Efficient and Secure Elliptic Curve Point Multiplication Using Double-Base Chains , 2005, ASIACRYPT.

[32]  Richard E. Blahut Transform Techniques for Error Control Codes , 1979, IBM J. Res. Dev..

[33]  Clément Pernet,et al.  Interactive Certificates for Polynomial Matrices with Sub-Linear Communication , 2018, ArXiv.

[34]  Joris van der Hoeven Relaxed mltiplication using the middle product , 2003, ISSAC.

[35]  Lloyd N. Trefethen,et al.  An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..

[36]  Guillaume Hanrot,et al.  The Middle Product Algorithm I , 2004, Applicable Algebra in Engineering, Communication and Computing.

[37]  P. L. Montgomery Modular multiplication without trial division , 1985 .

[38]  Rusins Freivalds,et al.  Fast Probabilistic Algorithms , 1979, MFCS.

[39]  Joris van der Hoeven,et al.  Relax, but Don't be Too Lazy , 2002, J. Symb. Comput..

[40]  Pascal Giorgi,et al.  Relaxing order basis computation , 2014, ACCA.

[41]  V. V. Williams ON SOME FINE-GRAINED QUESTIONS IN ALGORITHMS AND COMPLEXITY , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[42]  Naofumi Takagi,et al.  Bipartite Modular Multiplication Method , 2008, IEEE Transactions on Computers.

[43]  Jean-Guillaume Dumas,et al.  Generic design of Chinese remaindering schemes , 2010, PASCO.

[44]  Éric Schost,et al.  Implementations of Efficient Univariate Polynomial Matrix Algorithms and Application to Bivariate Resultants , 2019, ISSAC.

[45]  Éric Schost,et al.  Power series composition and change of basis , 2008, ISSAC '08.

[46]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.

[47]  Carl Pomerance,et al.  The Development of the Number Field Sieve , 1994 .

[48]  Chris Peikert,et al.  On Ideal Lattices and Learning with Errors over Rings , 2010, JACM.

[49]  Jean-Guillaume Dumas,et al.  Memory efficient scheduling of Strassen-Winograd's matrix multiplication algorithm , 2007, ISSAC '09.

[50]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[51]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[52]  Clément Pernet High Performance and Reliable Algebraic Computing. (Calcul Algébrique Fiable et Haute Performance) , 2014 .

[53]  Oscar H. Ibarra,et al.  A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.

[54]  Leonard M. Adleman,et al.  The function field sieve , 1994, ANTS.

[55]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[56]  Yael Tauman Kalai,et al.  Delegating computation: interactive proofs for muggles , 2008, STOC.

[57]  Éric Schost,et al.  Simultaneous Conversions with the Residue Number System Using Linear Algebra , 2018, ACM Trans. Math. Softw..

[58]  Vincent Neiger,et al.  Computing Popov and Hermite Forms of Rectangular Polynomial Matrices , 2018, ISSAC.

[59]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[60]  Jean-Guillaume Dumas,et al.  Parallel computation of the rank of large sparse matrices from algebraic K-theory , 2007, PASCO '07.

[61]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[62]  Éric Schost,et al.  A simple and fast online power series multiplication and its analysis , 2016, J. Symb. Comput..

[63]  Endong Wang,et al.  Intel Math Kernel Library , 2014 .

[64]  Jean-Guillaume Dumas,et al.  Matrix Multiplication Over Word-Size Modular Rings Using Approximate Formulas , 2016, ACM Trans. Math. Softw..

[65]  Marco Bodrato,et al.  Integer and polynomial multiplication: towards optimal toom-cook matrices , 2007, ISSAC '07.

[66]  Shmuel Winograd,et al.  On multiplication of 2 × 2 matrices , 1971 .

[67]  Andrei Alexandrescu,et al.  Modern C++ design: generic programming and design patterns applied , 2001 .

[68]  Pierrick Gaudry,et al.  The mpFq library and implementing curve-based key exchanges , 2007 .

[69]  Richard I. Tanaka,et al.  Residue arithmetic and its applications to computer technology , 1967 .

[70]  Stéphan Thomassé,et al.  On the complexity of partial derivatives , 2016, STACS.

[71]  Soumojit Sarkar,et al.  Triangular x-basis decompositions and derandomization of linear algebra algorithms over K[x] , 2012, J. Symb. Comput..

[72]  Allan Borodin,et al.  Fast Modular Transforms , 1974, J. Comput. Syst. Sci..

[73]  Laurent Imbert,et al.  Parallel Modular Multiplication on Multi-core Processors , 2013, 2013 IEEE 21st Symposium on Computer Arithmetic.

[74]  S. Cook,et al.  ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .

[75]  Harvey,et al.  Integer multiplication in time O(n log n) , 2021, Annals of Mathematics.

[76]  Daniel S. Roche What Can (and Can't) we Do with Sparse Polynomials? , 2018, ISSAC.

[77]  Jean-Guillaume Dumas,et al.  Proof-of-work certificates that can be efficiently computed in the cloud , 2018, CASC.

[78]  Michael J. Fischer,et al.  Fast on-line integer multiplication , 1973, STOC '73.

[79]  Pascal Giorgi,et al.  Certification of Minimal Approximant Bases , 2018, ISSAC.

[80]  Emmanuel Thomé,et al.  Subquadratic Computation of Vector Generating Polynomials and Improvement of the Block Wiedemann Algorithm , 2002, J. Symb. Comput..

[81]  George Labahn,et al.  Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix , 2017, J. Complex..

[82]  George Labahn,et al.  Shifted normal forms of polynomial matrices , 1999, ISSAC '99.

[83]  George Labahn,et al.  Normal forms for general polynomial matrices , 2006, J. Symb. Comput..

[84]  George Labahn,et al.  A deterministic algorithm for inverting a polynomial matrix , 2015, J. Complex..

[85]  Martin Fürer Faster integer multiplication , 2007, STOC '07.

[86]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[87]  Tommy Färnqvist Number Theory Meets Cache Locality – Efficient Implementation of a Small Prime FFT for the GNU Multiple Precision Arithmetic Library , 2005 .

[88]  Erich Kaltofen,et al.  Interactive certificate for the verification of Wiedemann's Krylov sequence: application to the certification of the determinant, the minimal and the characteristic polynomials of sparse matrices , 2015, ArXiv.

[89]  Adhemar Bultheel,et al.  A general module theoretic framework for vector M-Padé and matrix rational interpolation , 2005, Numerical Algorithms.

[90]  Gabriele Steidl,et al.  Fast algorithms for discrete polynomial transforms , 1998, Math. Comput..

[91]  David Harvey,et al.  An in-place truncated fourier transform and applications to polynomial multiplication , 2010, ISSAC.

[92]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[93]  Bruno Grenet,et al.  Generic Reductions for In-place Polynomial Multiplication , 2019, ISSAC.

[94]  Arnaud Tisserand,et al.  Comparison of Modular Arithmetic Algorithms on GPUs , 2009, PARCO.

[95]  Joris van der Hoeven,et al.  On the complexity of integer matrix multiplication , 2018, J. Symb. Comput..

[96]  Bin Li,et al.  Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients , 2012, J. Symb. Comput..

[97]  Erich Kaltofen Asymptotically fast solution of Toeplitz-like singular linear systems , 1994, ISSAC '94.

[98]  Vincent Neiger,et al.  Bases of relations in one or several variables: fast algorithms and applications. (Bases de relations en une ou plusieurs variables : algorithmes rapides et applications) , 2016 .

[99]  B. David Saunders,et al.  MATRIX RANK CERTIFICATION , 2004 .

[100]  L. Bluestein A linear filtering approach to the computation of discrete Fourier transform , 1970 .

[101]  Éric Schost,et al.  Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..

[102]  Joris van der Hoeven,et al.  Modular SIMD arithmetic in Mathemagix , 2014, ACM Trans. Math. Softw..

[103]  Joshua R. Wang,et al.  Deterministic Time-Space Tradeoffs for k-SUM , 2016, ICALP.

[104]  Thom Mulders On Short Multiplications and Divisions , 2000, Applicable Algebra in Engineering, Communication and Computing.

[105]  F. C. Hennie,et al.  On-Line Turing Machine Computations , 1966, IEEE Trans. Electron. Comput..

[106]  George Labahn,et al.  Computing minimal nullspace bases , 2012, ISSAC.

[107]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[108]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[109]  Arjen K. Lenstra,et al.  A heterogeneous computing environment to solve the 768-bit RSA challenge , 2010, Cluster Computing.

[110]  Erich Kaltofen,et al.  Fifteen years after DSC and WLSS2 what parallel computations I do today: invited lecture at PASCO 2010 , 2010, PASCO.

[111]  Sartaj Sahni,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[112]  Guillaume Hanrot,et al.  A long note on Mulders' short product , 2004, J. Symb. Comput..

[113]  Jean-Guillaume Dumas,et al.  Parallel Computation of Echelon Forms , 2014, Euro-Par.

[114]  William B. Hart,et al.  Fast Library for Number Theory: An Introduction , 2010, ICMS.

[115]  Laurent Imbert,et al.  Optimizing elliptic curve scalar multiplication for small scalars , 2009, Optical Engineering + Applications.

[116]  Daniel S. Roche,et al.  Sparse polynomials in FLINT , 2016, ACCA.

[117]  Erich Kaltofen,et al.  Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.

[118]  G. Villard A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .

[119]  Gilles Villard,et al.  Faster inversion and other black box matrix computations using efficient block projections , 2007, ISSAC '07.

[120]  Thomas Plantard,et al.  Subquadratic Binary Field Multiplier in Double Polynomial System , 2007, SECRYPT.

[121]  George Labahn,et al.  Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs , 2000, SIAM J. Matrix Anal. Appl..

[122]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[123]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.

[124]  Erich Kaltofen,et al.  Essentially optimal interactive certificates in linear algebra , 2014, ISSAC.

[125]  Ramdas Kumaresan,et al.  Fast Base Extension Using a Redundant Modulus in RNS , 1989, IEEE Trans. Computers.

[126]  Erich Kaltofen,et al.  On randomized Lanczos algorithms , 1997, ISSAC.

[127]  Robert A. van de Geijn,et al.  High-performance implementation of the level-3 BLAS , 2008, TOMS.

[128]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[129]  Christophe Soul'e Perfect forms and the Vandiver conjecture , 1998 .

[130]  Claude-Pierre Jeannerod,et al.  Fast computation of approximant bases in canonical form , 2018, J. Symb. Comput..

[131]  Tolga Acar,et al.  Analyzing and comparing Montgomery multiplication algorithms , 1996, IEEE Micro.

[132]  Chris Peikert,et al.  A Toolkit for Ring-LWE Cryptography , 2013, IACR Cryptol. ePrint Arch..

[133]  W. M. Gentleman,et al.  Fast Fourier Transforms: for fun and profit , 1966, AFIPS '66 (Fall).

[134]  Jean-Guillaume Dumas,et al.  Simultaneous computation of the row and column rank profiles , 2013, ISSAC '13.

[135]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[136]  Pascal Giorgi,et al.  A probabilistic algorithm for verifying polynomial middle product in linear time , 2018, Inf. Process. Lett..

[137]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[138]  Erich Kaltofen,et al.  LINBOX: A GENERIC LIBRARY FOR EXACT LINEAR ALGEBRA , 2002 .

[139]  Jérémy Berthomieu,et al.  Relaxed p-adic Hensel lifting for algebraic systems , 2012, ISSAC.

[140]  Joris van der Hoeven,et al.  Faster relaxed multiplication , 2014, ISSAC.

[141]  V. Strassen Gaussian elimination is not optimal , 1969 .

[142]  Jean-Michel Muller,et al.  Modern Computer Arithmetic , 2016, Computer.

[143]  Craig Gentry,et al.  A fully homomorphic encryption scheme , 2009 .

[144]  Romain Lebreton,et al.  Relaxed Hensel lifting of triangular sets , 2013, J. Symb. Comput..

[145]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[146]  George Labahn,et al.  Efficient algorithms for order basis computation , 2012, J. Symb. Comput..

[147]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[148]  Pascal Giorgi,et al.  Formal proof for delayed finite field arithmetic using floating point operators , 2007, ArXiv.

[149]  Erich Kaltofen,et al.  Quadratic-time certificates in linear algebra , 2011, ISSAC '11.

[150]  Alexandre Benoit,et al.  Algorithmique semi-numérique rapide des séries de Tchebychev. (Fast Semi-numerical Algorithms for Chebyshev Series) , 2012 .

[151]  Claude-Pierre Jeannerod,et al.  Computing minimal interpolation bases , 2015, J. Symb. Comput..

[152]  B. Salvy,et al.  Algorithmes Efficaces en Calcul Formel , 2017 .

[153]  David Harvey,et al.  Faster arithmetic for number-theoretic transforms , 2012, J. Symb. Comput..

[154]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[155]  Arne Storjohann Notes on computing minimal approximant bases , 2006, Challenges in Symbolic Computation Software.

[156]  Paul Barrett,et al.  Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor , 1986, CRYPTO.

[157]  Pascal Giorgi,et al.  Generating Optimized Sparse Matrix Vector Product over Finite Fields , 2014, ICMS.

[158]  Robert D. Silverman,et al.  AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM , 1990 .

[159]  Joris van der Hoeven,et al.  Mathemagix: the quest of modularity and efficiency for symbolic and certified numeric computation? , 2012, ACCA.

[160]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[161]  Joris van der Hoeven,et al.  On the bit-complexity of sparse polynomial and series multiplication , 2013, J. Symb. Comput..

[162]  Manfred Tasche,et al.  Fast Polynomial Multiplication and Convolutions Related to the Discrete Cosine Transform , 1997 .

[163]  Christophe Nègre,et al.  Multiplication in Finite Fields and Elliptic Curves , 2016 .

[164]  Jean-Guillaume Dumas,et al.  Recursion based parallelization of exact dense linear algebra routines for Gaussian elimination , 2016, Parallel Comput..

[165]  Jean-Guillaume Dumas,et al.  Dense Linear Algebra over Finite Fields: the FFLAS and FFPACK packages , 2006, ArXiv.

[166]  Joris van der Hoeven,et al.  Sparse Polynomial Interpolation in Practice , 2015, ACCA.

[167]  Justin Thaler,et al.  Time-Optimal Interactive Proofs for Circuit Evaluation , 2013, CRYPTO.

[168]  Nigel P. Smart,et al.  Parallel cryptographic arithmetic using a redundant Montgomery representation , 2004, IEEE Transactions on Computers.

[169]  Amir Shpilka,et al.  Complexity Theory Column 88 , 2015, SIGACT News.

[170]  Jean-Guillaume Dumas,et al.  Exact sparse matrix-vector multiplication on GPU's and multicore architectures , 2010, PASCO.

[171]  Joris van der Hoeven,et al.  Polynomial Multiplication over Finite Fields in Time \( O(n \log n \) , 2019, J. ACM.

[172]  Pascal Giorgi,et al.  On Polynomial Multiplication in Chebyshev Basis , 2010, IEEE Transactions on Computers.

[173]  T. Izard Opérateurs Arithmétiques Parallèles pour la Cryptographie Asymétrique , 2011 .

[174]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[175]  Erich Kaltofen,et al.  Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields , 1999, Algorithmica.

[176]  Nicolas Brisebarre,et al.  Chebyshev interpolation polynomial-based tools for rigorous computing , 2010, ISSAC.

[177]  Vassil S. Dimitrov,et al.  Efficient Quintuple Formulas for Elliptic Curves and Efficient Scalar Multiplication Using Multibase Number Representation , 2007, ISC.

[178]  Éric Schost,et al.  Power series solutions of singular (q)-differential equations , 2012, ISSAC.

[179]  Arjen K. Lenstra,et al.  Computation of a 768-Bit Prime Field Discrete Logarithm , 2017, EUROCRYPT.

[180]  William J. Turner,et al.  A block Wiedemann rank algorithm , 2006, ISSAC '06.

[181]  Jean-Guillaume Dumas,et al.  Finite field linear algebra subroutines , 2002, ISSAC '02.

[182]  Ingrid Verbauwhede,et al.  Tripartite modular multiplication , 2011, Integr..

[183]  Arjen K. Lenstra,et al.  Factorization of a 768-Bit RSA Modulus , 2010, CRYPTO.

[184]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[185]  Gilles Villard,et al.  Computing the rank and a small nullspace basis of a polynomial matrix , 2005, ISSAC.

[186]  Clément Pernet,et al.  Faster algorithms for the characteristic polynomial , 2007, ISSAC '07.

[187]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[188]  Yiping Cheng Space-Efficient Karatsuba Multiplication for Multi-Precision Integers , 2016, ArXiv.

[189]  Erich Kaltofen,et al.  On the complexity of computing determinants , 2001, computational complexity.

[190]  Jack Dongarra,et al.  Special Issue on Program Generation, Optimization, and Platform Adaptation , 2005, Proc. IEEE.

[191]  Claude-Pierre Jeannerod,et al.  Rank-profile revealing Gaussian elimination and the CUP matrix decomposition , 2011, J. Symb. Comput..

[192]  J. Pollard,et al.  The fast Fourier transform in a finite field , 1971 .

[193]  Erich Kaltofen,et al.  Linear Time Interactive Certificates for the Minimal Polynomial and the Determinant of a Sparse Matrix , 2016, ISSAC.

[194]  S. C. Chan,et al.  Direct methods for computing discrete sinusoidal transforms , 1990 .

[195]  Torben Hagerup,et al.  Sorting and Searching on the Word RAM , 1998, STACS.

[196]  Claude-Pierre Jeannerod,et al.  Essentially optimal computation of the inverse of generic polynomial matrices , 2005, J. Complex..

[197]  Wei Zhou,et al.  Fast Order Basis and Kernel Basis Computation and Related Problems , 2013 .

[198]  Kazutoshi Fujikawa,et al.  Fast Modular Arithmetic on the Kalray MPPA-256 Processor for an Energy-Efficient Implementation of ECM , 2017, IEEE Transactions on Computers.

[199]  Andrew Arnold,et al.  Output-Sensitive Algorithms for Sumset and Sparse Polynomial Multiplication , 2015, ISSAC.

[200]  Joris van der Hoeven New algorithms for relaxed multiplication , 2007, J. Symb. Comput..

[201]  Joris van der Hoeven,et al.  Lazy multiplication of formal power series , 1997, ISSAC.

[202]  David Buchfuhrer,et al.  The complexity of Boolean formula minimization , 2008, J. Comput. Syst. Sci..

[203]  Jean-Guillaume Dumas,et al.  FFPACK: finite field linear algebra package , 2004, ISSAC '04.

[204]  Anatolij A. Karatsuba,et al.  Multiplication of Multidigit Numbers on Automata , 1963 .

[205]  Joris van der Hoeven The truncated fourier transform and applications , 2004, ISSAC '04.

[206]  Tracy Kimbrel,et al.  A Probabilistic Algorithm for Verifying Matrix Products Using O(n²) Time and log_2 n + O(1) Random Bits , 1993, Inf. Process. Lett..