Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: A review

[1]  Qing Zhao,et al.  Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries , 2019, Nature Energy.

[2]  Jun Liu,et al.  Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries , 2019, Joule.

[3]  Donghai Wang,et al.  Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions , 2019, Nature Materials.

[4]  Yan‐Bing He,et al.  Constructing Effective Interfaces for Li1.5Al0.5Ge1.5(PO4)3 Pellets To Achieve Room-Temperature Hybrid Solid-State Lithium Metal Batteries. , 2019, ACS applied materials & interfaces.

[5]  Xiulin Fan,et al.  High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes , 2019, Nature Energy.

[6]  Jiaqi Huang,et al.  Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries , 2019, ACS Energy Letters.

[7]  Xizheng Liu,et al.  Flexible Lithium-Air Battery in Ambient Air with an In Situ Formed Gel Electrolyte. , 2018, Angewandte Chemie.

[8]  Chen‐Zi Zhao,et al.  Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries , 2018, Engineering.

[9]  Yueyu Tong,et al.  Nonlithium Metal–Sulfur Batteries: Steps Toward a Leap , 2018, Advanced materials.

[10]  Li‐Zhen Fan,et al.  Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte , 2018, Energy Storage Materials.

[11]  Li-Min Wang,et al.  Interface-Engineered Li7 La3 Zr2 O12 -Based Garnet Solid Electrolytes with Suppressed Li-Dendrite Formation and Enhanced Electrochemical Performance. , 2018, ChemSusChem.

[12]  Qiang Bai,et al.  Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries , 2018, Joule.

[13]  Rui Zhang,et al.  An Armored Mixed Conductor Interphase on a Dendrite‐Free Lithium‐Metal Anode , 2018, Advanced materials.

[14]  T. Mallouk,et al.  Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10 GeP2 S12 Solid Electrolyte Interface. , 2018, Angewandte Chemie.

[15]  H. Girault,et al.  Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception , 2018 .

[16]  Jiaqi Huang,et al.  Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries , 2018, Angewandte Chemie.

[17]  Yan‐Bing He,et al.  Progress and Perspective of Solid‐State Lithium–Sulfur Batteries , 2018 .

[18]  Ya‐Xia Yin,et al.  Progress of the Interface Design in All‐Solid‐State Li–S Batteries , 2018 .

[19]  Yang Jin,et al.  Ionic liquid enabling stable interface in solid state lithium sulfur batteries working at room temperature , 2018, Electrochimica Acta.

[20]  Lei Wen,et al.  Engineering of lithium-metal anodes towards a safe and stable battery , 2018, Energy Storage Materials.

[21]  M. Armand,et al.  A Stable Quasi-Solid-State Sodium-Sulfur Battery. , 2018, Angewandte Chemie.

[22]  Yong Yang,et al.  Stabilizing Li10SnP2S12/Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer. , 2018, ACS applied materials & interfaces.

[23]  S. Passerini,et al.  Hybrid electrolytes for lithium metal batteries , 2018, Journal of Power Sources.

[24]  Jiaqi Huang,et al.  Dual‐Layered Film Protected Lithium Metal Anode to Enable Dendrite‐Free Lithium Deposition , 2018, Advanced materials.

[25]  Xiaoting Lin,et al.  Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes , 2018, Nano Energy.

[26]  Ya‐Xia Yin,et al.  Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array. , 2018, ACS applied materials & interfaces.

[27]  Yizhou Zhu,et al.  Statistical variances of diffusional properties from ab initio molecular dynamics simulations , 2018, npj Computational Materials.

[28]  Qi Li,et al.  Recent Progress of the Solid‐State Electrolytes for High‐Energy Metal‐Based Batteries , 2018 .

[29]  Xuan Hu,et al.  A lithium–oxygen battery with a long cycle life in an air-like atmosphere , 2018, Nature.

[30]  J. Cabana,et al.  Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries. , 2018, Accounts of chemical research.

[31]  Ya‐Xia Yin,et al.  Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. , 2018, Journal of the American Chemical Society.

[32]  P. Cui,et al.  Interface Re-Engineering of Li10GeP2S12 Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2018, ACS applied materials & interfaces.

[33]  N. Zhao,et al.  Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery , 2017 .

[34]  C. Bauschlicher,et al.  Decomposition of Ionic Liquids at Lithium Interfaces. 2. Gas Phase Computations , 2017 .

[35]  S. Passerini,et al.  Na 3 Si 2 Y 0.16 Zr 1.84 PO 12 -ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries? , 2017 .

[36]  Qiang Zhang,et al.  Review on High‐Loading and High‐Energy Lithium–Sulfur Batteries , 2017 .

[37]  Jian-jun Zhang,et al.  An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes. , 2017, Physical chemistry chemical physics : PCCP.

[38]  Bingbing Chen,et al.  Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries. , 2017, ACS applied materials & interfaces.

[39]  Rui Zhang,et al.  An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes , 2017, Proceedings of the National Academy of Sciences.

[40]  M. Whittingham,et al.  Narrowing the Gap between Theoretical and Practical Capacities in Li‐Ion Layered Oxide Cathode Materials , 2017 .

[41]  Yan‐Bing He,et al.  A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances , 2017 .

[42]  M. Ishikawa,et al.  Lithium bis(fluorosulfonyl)imide based low ethylene carbonate content electrolyte with unusual solvation state , 2017 .

[43]  J. Chai,et al.  High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self‐Catalyzed Strategy toward Facile Synthesis , 2017, Advanced science.

[44]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[45]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[46]  M. Winter,et al.  Modified Imidazolium‐Based Ionic Liquids With Improved Chemical Stability Against Lithium Metal , 2017 .

[47]  Yizhou Zhu,et al.  Origin of fast ion diffusion in super-ionic conductors , 2017, Nature Communications.

[48]  Biyi Xu,et al.  Stabilization of Garnet/Liquid Electrolyte Interface Using Superbase Additives for Hybrid Li Batteries. , 2017, ACS applied materials & interfaces.

[49]  Venkatasubramanian Viswanathan,et al.  Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[50]  Sen Xin,et al.  A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries. , 2017, Angewandte Chemie.

[51]  M. Winter,et al.  Decomposition of Imidazolium-Based Ionic Liquids in Contact with Lithium Metal. , 2017, ChemSusChem.

[52]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[53]  Yong‐Sheng Hu,et al.  A Self‐Forming Composite Electrolyte for Solid‐State Sodium Battery with Ultralong Cycle Life , 2017 .

[54]  Lucienne Buannic,et al.  Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. , 2017, ACS applied materials & interfaces.

[55]  Youngsik Kim,et al.  Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries , 2016 .

[56]  Liquan Chen,et al.  Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) based separator for Li-ion batteries* , 2016 .

[57]  T. Leichtweiss,et al.  Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. , 2016, Nature chemistry.

[58]  Ming Liu,et al.  SiO2 Hollow Nanosphere‐Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life , 2016 .

[59]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[60]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[61]  Ya‐Xia Yin,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[62]  Sebastian Wenzel,et al.  Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte , 2016 .

[63]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[64]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[65]  Young Jin Nam,et al.  Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk‐Type All‐Solid‐State Lithium‐Ion Batteries , 2015 .

[66]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[67]  Xiao‐Qing Yang,et al.  Preferential Solvation of Lithium Cations and Impacts on Oxygen Reduction in Lithium-Air Batteries. , 2015, ACS applied materials & interfaces.

[68]  Ming Liu,et al.  In Situ Synthesis of a Hierarchical All‐Solid‐State Electrolyte Based on Nitrile Materials for High‐Performance Lithium‐Ion Batteries , 2015 .

[69]  Yongyao Xia,et al.  A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte , 2015 .

[70]  Yan‐Bing He,et al.  Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery , 2014 .

[71]  F. Kang,et al.  In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries , 2014 .

[72]  Jie Li,et al.  Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane. , 2014, ChemSusChem.

[73]  Shizhao Xiong,et al.  Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries , 2014 .

[74]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[75]  J. Maier,et al.  Soggy-sand electrolytes: status and perspectives. , 2013, Physical chemistry chemical physics : PCCP.

[76]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[77]  Dong‐Won Kim,et al.  Cycling Characteristics of Lithium Powder Polymer Batteries Assembled with Composite Gel Polymer Electrolytes and Lithium Powder Anode , 2013 .

[78]  S. Russo,et al.  Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N -methyl- N -propyl-pyrrolidinium- bis(fluorosulfonyl)imide , 2012 .

[79]  Peng Lu,et al.  Direct calculation of Li-ion transport in the solid electrolyte interphase. , 2012, Journal of the American Chemical Society.

[80]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[81]  Hyea Kim,et al.  LiSICON – ionic liquid electrolyte for lithium ion battery , 2012 .

[82]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[83]  Y. Orikasa,et al.  Lithium-Ion Transfer Reaction at the Interface between Partially Fluorinated Insertion Electrodes and Electrolyte Solutions , 2011 .

[84]  A. Hollenkamp,et al.  Ionic Liquids with the Bis(fluorosulfonyl)imide Anion: Electrochemical Properties and Applications in Battery Technology , 2010 .

[85]  Kang Xu,et al.  Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[86]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[87]  H. Matsumoto,et al.  Ab initio study of EMIM-BF4 crystal interaction with a Li (100) surface as a model for ionic liquid/Li interfaces in Li-ion batteries. , 2009, The Journal of chemical physics.

[88]  M. Doeff,et al.  Compatibility of Li x Ti y Mn1 − y O2 ( y = 0 , 0.11 ) Electrode Materials with Pyrrolidinium-Based Ionic Liquid Electrolyte Systems , 2008 .

[89]  Hui Zhan,et al.  In situ fabrication of lithium polymer battery basing on a novel electro-polymerization technique , 2007 .

[90]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[91]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[92]  T. Abe,et al.  Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries , 2005 .

[93]  W. Henderson,et al.  Recent developments in the ENEA lithium metal battery project , 2005 .

[94]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[95]  T. Abe,et al.  Pulse voltammetric and ac impedance spectroscopic studies on lithium ion transfer at an electrolyte/Li4/3Ti5/3O4 electrode interface. , 2005, Analytical chemistry.

[96]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .

[97]  Xiaohua Ma,et al.  Novel preparation of nanocomposite polymer electrolyte and its application to lithium polymer batteries , 2004 .

[98]  M. Watanabe,et al.  Polypyrrole/Polymer Electrolyte Composites Prepared by In Situ Electropolymerization of Pyrrole as Cathode/Electrolyte Material for Facile Electron Transfer at the Solid Interface , 2001 .

[99]  M. Odziemkowski,et al.  An Electrochemical Study of the Reactivity at the Lithium Electrolyte/Bare Lithium Metal Interface , 1992 .

[100]  Tingzheng Hou,et al.  Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives , 2019, Materials Today.

[101]  T. Abe,et al.  Electrochemical Analysis of Lithium-Ion Transfer Reaction through the Interface between Ceramic Electrolyte and Ionic Liquids , 2012 .