Pseudo Boolean Programming for Partially Ordered Genomes
暂无分享,去创建一个
Guillaume Fertin | Stéphane Vialette | Sébastien Angibaud | Annelyse Thévenin | G. Fertin | Annelyse Thévenin | Stéphane Vialette | Sébastien Angibaud
[1] Guillaume Fertin,et al. A Pseudo-Boolean Framework for Computing Rearrangement Distances between Genomes with Duplicates , 2007, J. Comput. Biol..
[2] W. Ewens,et al. The chromosome inversion problem , 1982 .
[3] Jens Stoye,et al. On the Similarity of Sets of Permutations and Its Applications to Genome Comparison , 2003, COCOON.
[4] David Sankoff,et al. Reversal distance for partially ordered genomes , 2005, ISMB.
[5] Guillaume Fertin,et al. Efficient Tools for Computing the Number of Breakpoints and the Number of Adjacencies between Two Genomes with Duplicate Genes , 2008, J. Comput. Biol..
[6] Mathieu Blanchette,et al. Gene Maps Linearization Using Genomic Rearrangement Distances , 2007, J. Comput. Biol..
[7] Takeaki Uno,et al. Fast Algorithms to Enumerate All Common Intervals of Two Permutations , 1997, Algorithmica.
[8] Niklas Sörensson,et al. Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..
[9] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.