Single Imputation Via Chunk-Wise PCA

[1]  Richard D. Braatz,et al.  Principal Component Analysis of Process Datasets with Missing Values , 2017 .

[2]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data , 1988 .

[3]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[4]  A. Ferrer,et al.  PCA model building with missing data: New proposals and a comparative study , 2015 .

[5]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[6]  Sébastien Loisel,et al.  Comparisons among several methods for handling missing data in principal component analysis (PCA) , 2018, Advances in Data Analysis and Classification.

[7]  Alessio Farcomeni,et al.  Principal Component Analysis in the Presence of Missing Data , 2018 .

[8]  Ralph R. Martin,et al.  Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition , 2002, Image and Vision Computing.

[9]  Julie Josse,et al.  Handling missing values in exploratory multivariate data analysis methods , 2012 .

[10]  John C. Gower,et al.  Statistical methods of comparing different multivariate analyses of the same data , 1971 .

[11]  Norman Matloff Software Alchemy: Turning Complex Statistical Computations into Embarrassingly-Parallel Ones , 2014 .

[12]  H. Kiers Weighted least squares fitting using ordinary least squares algorithms , 1997 .

[13]  Julie Josse,et al.  Principal component analysis with missing values: a comparative survey of methods , 2015, Plant Ecology.

[14]  Alfonso Iodice D'Enza,et al.  The idm Package: Incremental Decomposition Methods in R , 2018 .

[15]  Joseph L Schafer,et al.  Analysis of Incomplete Multivariate Data , 1997 .

[16]  Pieter M. Kroonenberg,et al.  Missing data in principal component analysis of questionnaire data: a comparison of methods , 2014 .

[17]  Maia B. Cook,et al.  Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation , 2017 .