Asynchronous cellular automata for pomsets

Abstract This paper extends to pomsets without auto-concurrency the fundamental notion of asynchronous cellular automata (ACA) which was originally introduced for traces by Zielonka. We generalize to pomsets the notion of asynchronous mapping introduced by Cori, Metivier and Zielonka and we show how to construct a deterministic ACA~from an asynchronous mapping. Then we investigate the relation between the expressiveness of monadic second-order logic, nondeterministic ACAs and deterministic ACAs. We can generalize Buchi's theorem for finite words to a class of pomsets without auto-concurrency which satisfy a natural axiom. This axiom ensures that an asynchronous cellular automaton works on the pomset as a concurrent read and exclusive owner write machine. More precisely, in this class nondeterministic ACAs, deterministic ACAs and monadic second-order logic have the same expressive power. Then we consider a class where deterministic ACAs are strictly weaker than nondeterministic ones. But in this class nondeterministic ACAs still capture monadic second-order logic. Finally, it is shown that even this equivalence does not hold in the class of all pomsets since there the class of recognizable pomset languages is not closed under complementation.

[1]  Peter H. Starke,et al.  Processes in Petri Nets , 1981, J. Inf. Process. Cybern..

[2]  Dietrich Kuske,et al.  Contributions to a trace theory beyond Mazurkiewicz traces , 2011 .

[3]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[4]  Volker Diekert,et al.  The Book of Traces , 1995 .

[5]  Dietrich Kuske,et al.  Asynchronous Cellular Automata and Asynchronous Automata for Pomsets , 1998, CONCUR.

[6]  Wieslaw Zielonka Safe Executions of Recognizable Trace Languages by Asynchronous Automata , 1989, Logic at Botik.

[7]  Jay L. Gischer,et al.  The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..

[8]  A. Arnold,et al.  An extension of the notions of traces and of asynchronous automata , 1991, RAIRO Theor. Informatics Appl..

[9]  Anca Muscholl,et al.  Construction of Asynchronous Automata , 1995, The Book of Traces.

[10]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[11]  Wieslaw Zielonka,et al.  Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..

[12]  Pascal Weil,et al.  Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..

[13]  Yves Métivier,et al.  Asynchronous Mappings and Asynchronous Cellular Automata , 1993, Inf. Comput..

[14]  Paul Gastin,et al.  Asynchronous Cellular Automata for Pomsets Without Auto-concurrency , 1996, CONCUR.

[15]  Pascal Weil,et al.  Series-Parallel Posets: Algebra, Automata and Languages , 1998, STACS.

[16]  Volker Diekert A Partial Trace Semantics for Petri Nets , 1994, Theor. Comput. Sci..

[17]  Pascal Weil,et al.  A Kleene Iteration for Parallelism , 1998, FSTTCS.

[18]  Antoni W. Mazurkiewicz,et al.  Trace Theory , 1986, Advances in Petri Nets.

[19]  Anca Muscholl,et al.  Über die Erkennbarkeit unendlicher Spuren , 1994 .