Survey of Properties of Key Single and Mixture Halide Salts for Potential Application as High Temperature Heat Transfer Fluids for Concentrated Solar Thermal Power Systems

In order to obtain high energy efficiency in a concentrated solar thermal power plant, more and more high concentration ratio to solar radiation are applied to collect high temperature thermal energy in modern solar power technologies. This incurs the need of a heat transfer fluid being able to work at more and more high temperatures to carry the heat from solar concentrators to a power plant. To develop the third generation heat transfer fluids targeting at a high working temperature at least 800 ℃, a research team from University of Arizona, Georgia Institute of Technology, and Arizona State University proposed to use eutectic halide salts mixtures in order to obtain the desired properties of low melting point, low vapor pressure, great stability at temperatures at least 800 ℃, low corrosion, and favorable thermal and transport properties. In this paper, a survey of the available thermal and transport properties of single and eutectic mixture of several key halide salts is conducted, providing information of great significance to researchers for heat transfer fluid development.

[1]  Ulf Herrmann,et al.  Engineering aspects of a molten salt heat transfer fluid in a trough solar field , 2004 .

[2]  李幼升,et al.  Ph , 1989 .

[3]  R. Tamme,et al.  Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications , 2014 .

[4]  Ramana G. Reddy,et al.  Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation , 2013 .

[5]  Gleb Mamantov,et al.  Advances in Molten Salt Chemistry , 2012 .

[6]  John W. Kelton,et al.  Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in Parabolic Trough Power Plants , 2004 .

[7]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[8]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[9]  Nceku Nyathi,et al.  Part 2 Case Studies , 2011 .

[10]  D. Kearney,et al.  Survey of Thermal Energy Storage for Parabolic Trough Power Plants , 2002 .

[11]  Martin Dr. Forster,et al.  Theoretical investigation of the system SnOx/Sn for the thermochemical storage of solar energy , 2004 .

[12]  Changying Zhao,et al.  Thermal property characterization of a low melting-temperature ternary nitrate salt mixture for thermal energy storage systems , 2011 .

[13]  Tao Wang,et al.  Novel low melting point quaternary eutectic system for solar thermal energy storage , 2013 .

[14]  Howard F. McMurdie,et al.  Phase diagrams for ceramists , 1964 .

[15]  Huaqing Xie,et al.  Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers , 2010 .

[16]  Nasrudin Abd Rahim,et al.  A review on global solar energy policy , 2011 .

[17]  Justin Raade,et al.  Development of Molten Salt Heat Transfer Fluid With Low Melting Point and High Thermal Stability , 2011 .

[18]  C. Robelin,et al.  Thermodynamic evaluation and optimization of the (NaCl + KCl + AlCl3) system , 2004 .

[19]  Manfred Lenzen,et al.  Subsidies for electricity-generating technologies: A review , 2010 .

[20]  R. W. Mar,et al.  Pressure-temperature-composition relationships for heated drawsalt systems , 1980 .

[21]  A. Bejan,et al.  Thermal Energy Storage: Systems and Applications , 2002 .

[22]  A. Kannan,et al.  Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications , 2014 .

[23]  S. D. Kim,et al.  Ternary carbonate eutectic (lithium, sodium and potassium carbonates) for latent heat storage medium , 1990 .

[24]  Henry Price,et al.  Adopting Nitrate/Nitrite Salt Mixtures as the Heat Transport Fluid in Parabolic Trough Power Plants , 2007 .

[25]  Gregory J. Kolb,et al.  Final Test and Evaluation Results from the Solar Two Project , 2002 .

[26]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[27]  G. Janz,et al.  Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems , 1979 .

[28]  Richard B. Diver,et al.  Status of the Advanced Dish Development System Project , 2003 .

[29]  Tao Wang,et al.  Thermodynamic properties of LiNO3–NaNO3–KNO3–2KNO3·Mg(NO3)2 system , 2013 .

[30]  J. C. Gomez,et al.  Ca(NO3)2—NaNO3—KNO3 Molten Salt Mixtures for Direct Thermal Energy Storage Systems in Parabolic Trough Plants , 2013 .

[31]  R. Hagiwara,et al.  Physicochemical properties of ZnCl2–NaCl–KCl eutectic melt , 2009 .

[32]  Tao Wang,et al.  Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage , 2012 .

[33]  Robert W. Bradshaw,et al.  Chemical and Engineering Factors Affecting Solar Central Receiver Applications of Ternary Molten Salts , 1988 .

[34]  J. Pacheco,et al.  DEVELOPMENT OF A MOLTEN-SALT THERMOCLINE THERMAL STORAGE SYSTEM FOR PARABOLIC TROUGH PLANTS , 2001 .

[35]  S. Pedersen Viscosity, structure and glass formation in the AlCl3-ZnCl2 system , 2001 .

[36]  T. Wendelin Parabolic Trough VSHOT Optical Characterization in 2005-2006 (Presentation) , 2006 .

[37]  W. Reynolds Thermodynamic properties in SI , 1979 .

[38]  D. Cubicciotti,et al.  Heat Contents of Molten Zinc Chloride and Bromide and the Molecular Constants of the Gases , 1963 .

[39]  J. Hildebrand,et al.  THERMODYNAMIC PROPERTIES OF SOLUTIONS OF MOLTEN LEAD CHLORIDE AND ZINC CHLORIDE , 1930 .

[40]  Gregory J. Kolb,et al.  CONCEPTUAL DESIGN OF AN ADVANCED TROUGH UTILIZING A MOLTEN SALT WORKING FLUID. , 2008 .

[41]  S. Iniyan,et al.  A review of solar thermal technologies , 2010 .

[42]  S. Report Viscosity of Multi-component Molten Nitrate Salts—Liquidus to 200°C , 2010 .

[43]  Suresh V. Garimella,et al.  An Integrated Thermal and Mechanical Investigation of Molten-Salt Thermocline Energy Storage , 2011 .

[44]  W. Phillips,et al.  Advanced latent heat of fusion thermal energy storage for solar power systems , 1985 .

[45]  A. Oztekin,et al.  Thermophysical Properties of LiNO3–NaNO3–KNO3 Mixtures for Use in Concentrated Solar Power , 2013 .

[46]  Manfred Becker,et al.  Comparison of heat transfer fluids for use in solar thermal power stations , 1980 .

[47]  Ulf Herrmann,et al.  Two-tank molten salt storage for parabolic trough solar power plants , 2004 .

[48]  C. Brun,et al.  Molten salts and nuclear energy production , 2007 .

[49]  N. Siegel,et al.  MOLTEN NITRATE SALT DEVELOPMENT FOR THERMAL ENERGY STORAGE IN PARABOLIC TROUGH SOLAR POWER SYSTEMS , 2008 .

[50]  D. Cubicciotti,et al.  Vapor Pressures of Zinc Chloride and Zinc Bromide and Their Gaseous Dimerization , 1964 .

[51]  C. Robelin,et al.  Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + ZnCl2) system , 2011 .

[52]  D. Meeker,et al.  High-temperature stability of ternary nitrate molten salts for solar thermal energy systems , 1990 .

[53]  D. S. Rustad,et al.  Vapor pressure of iron(III) chloride , 1983 .

[54]  D. Kearney,et al.  Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field , 2003 .

[55]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .