BRCA1 deficiency specific base substitution mutagenesis is dependent on translesion synthesis and regulated by 53BP1

[1]  M. Kovács,et al.  Evaluation and modulation of DNA lesion bypass in an SV40 large T antigen‐based in vitro replication system , 2021, FEBS open bio.

[2]  C. Swanton,et al.  A comparative analysis of the mutagenicity of platinum-containing chemotherapeutic agents reveals direct and indirect mutagenic mechanisms , 2021, Mutagenesis.

[3]  S. Loeillet,et al.  Trajectory and uniqueness of mutational signatures in yeast mutators , 2020, Proceedings of the National Academy of Sciences.

[4]  M. Dowsett,et al.  Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer , 2020, Nature Communications.

[5]  Mary Goldman,et al.  Genomic basis for RNA alterations in cancer , 2020, Nature.

[6]  T. de Lange,et al.  53BP1: a DSB escort , 2020, Genes & development.

[7]  Jeremy M. Stark,et al.  53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. , 2020, Molecular cell.

[8]  Z. Szallasi,et al.  Correlation of homologous recombination deficiency induced mutational signatures with sensitivity to PARP inhibitors and cytotoxic agents , 2019, Genome Biology.

[9]  A. Doherty,et al.  PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts , 2019, Nature Communications.

[10]  A. Venkitaraman How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility? , 2019, DNA repair.

[11]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[12]  K. Hirota,et al.  DNA Damage Tolerance Mechanisms Revealed from the Analysis of Immunoglobulin V Gene Diversification in Avian DT40 Cells , 2018, Genes.

[13]  Hisashi Tanaka,et al.  BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II–DNA complexes , 2018, Proceedings of the National Academy of Sciences.

[14]  B. Schuster-Böckler,et al.  Mutational signature distribution varies with DNA replication timing and strand asymmetry , 2018, Genome Biology.

[15]  Edwin Cuppen,et al.  MutationalPatterns: comprehensive genome-wide analysis of mutational processes , 2016, Genome Medicine.

[16]  Mi Ni Huang,et al.  In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors , 2017, bioRxiv.

[17]  J. Reis-Filho,et al.  Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes , 2017, Nature Communications.

[18]  P. Sung,et al.  BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing , 2017, Nature.

[19]  W. Chung,et al.  Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers , 2017, JAMA.

[20]  J. Zámborszky,et al.  A genetic study based on PCNA-ubiquitin fusions reveals no requirement for PCNA polyubiquitylation in DNA damage tolerance. , 2017, DNA repair.

[21]  A. Antoni,et al.  Moonlighting at replication forks – a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51 , 2017, FEBS letters.

[22]  Z. Szallasi,et al.  Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut , 2017, BMC Bioinformatics.

[23]  I Csabai,et al.  Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions , 2016, Oncogene.

[24]  D. Branzei,et al.  DNA damage tolerance by recombination: Molecular pathways and DNA structures , 2016, DNA repair.

[25]  Robert A. Baldock,et al.  Human BRCA1–BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection , 2016, Nature Structural &Molecular Biology.

[26]  S. Cantor,et al.  Replication Fork Stability Confers Chemoresistance in BRCA-deficient Cells , 2016, Nature.

[27]  Gábor E. Tusnády,et al.  A comprehensive survey of the mutagenic impact of common cancer cytotoxics , 2016, Genome Biology.

[28]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[29]  Jia Cao,et al.  Mechanisms of mutagenesis: DNA replication in the presence of DNA damage. , 2016, Mutation research. Reviews in mutation research.

[30]  Z. Szallasi,et al.  Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer , 2016, Clinical Cancer Research.

[31]  B. Taylor,et al.  deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution , 2016, Genome Biology.

[32]  E. Egelman,et al.  Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination , 2015, Cell.

[33]  Cindy Follonier,et al.  Visualization of recombination–mediated damage-bypass by template switching , 2014, Nature Structural &Molecular Biology.

[34]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[35]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[36]  M. Resnick,et al.  Homologous recombination rescues ssDNA gaps generated by nucleotide excision repair and reduced translesion DNA synthesis in yeast G2 cells , 2013, Proceedings of the National Academy of Sciences.

[37]  J. Sale Translesion DNA synthesis and mutagenesis in eukaryotes. , 2013, Cold Spring Harbor perspectives in biology.

[38]  Shridar Ganesan,et al.  Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. , 2013, Cancer discovery.

[39]  S. Iwai,et al.  Analysis of CPD Ultraviolet Lesion Bypass in Chicken DT40 Cells: Polymerase η and PCNA Ubiquitylation Play Identical Roles , 2012, PloS one.

[40]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[41]  J. Sale Measurement of diversification in the immunoglobulin light chain gene of DT40 cells. , 2012, Methods in molecular biology.

[42]  Steven Salzberg,et al.  BIOINFORMATICS ORIGINAL PAPER , 2004 .

[43]  D. Livingston,et al.  BRCA1 is required for postreplication repair after UV-induced DNA damage. , 2011, Molecular cell.

[44]  A. Egashira,et al.  Double-Strand Break Repair-Independent Role for BRCA2 in Blocking Stalled Replication Fork Degradation by MRE11 , 2011, Cell.

[45]  M. Hemann,et al.  Error-prone translesion synthesis mediates acquired chemoresistance , 2010, Proceedings of the National Academy of Sciences.

[46]  D. Branzei,et al.  Replication and Recombination Factors Contributing to Recombination-Dependent Bypass of DNA Lesions by Template Switch , 2010, PLoS genetics.

[47]  M. Lopes,et al.  Rad51 protects nascent DNA from Mre11 dependent degradation and promotes continuous DNA synthesis , 2010, Nature Structural &Molecular Biology.

[48]  D. Adams,et al.  53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers , 2010, Nature Structural &Molecular Biology.

[49]  Jeremy M. Stark,et al.  53BP1 Inhibits Homologous Recombination in Brca1-Deficient Cells by Blocking Resection of DNA Breaks , 2010, Cell.

[50]  T. Glover,et al.  Differential Roles for DNA Polymerases Eta, Zeta, and REV1 in Lesion Bypass of Intrastrand versus Interstrand DNA Cross-Links , 2009, Molecular and Cellular Biology.

[51]  J. Nitiss Targeting DNA topoisomerase II in cancer chemotherapy , 2009, Nature Reviews Cancer.

[52]  Junjie Chen,et al.  PALB2 is an integral component of the BRCA complex required for homologous recombination repair , 2009, Proceedings of the National Academy of Sciences.

[53]  Feng Zhang,et al.  PALB2 Links BRCA1 and BRCA2 in the DNA-Damage Response , 2009, Current Biology.

[54]  Z. Livneh,et al.  Two‐polymerase mechanisms dictate error‐free and error‐prone translesion DNA synthesis in mammals , 2009, The EMBO journal.

[55]  J. Sale,et al.  REV1 restrains DNA polymerase ζ to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo , 2008, Nucleic acids research.

[56]  B. Orelli,et al.  Brca1 in immunoglobulin gene conversion and somatic hypermutation. , 2008, DNA repair.

[57]  T. Kunkel,et al.  The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases , 2008, Cell Research.

[58]  Jiri Bartek,et al.  Human CtIP promotes DNA end resection , 2007, Nature.

[59]  Yasukazu Daigaku,et al.  Error-free RAD52 pathway and error-prone REV3 pathway determines spontaneous mutagenesis in Saccharomyces cerevisiae. , 2007, Genes & genetic systems.

[60]  C. Lawrence,et al.  The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Thomas Helleday,et al.  Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase , 2005, Nature.

[62]  S. Chaney,et al.  Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. , 2005, Critical reviews in oncology/hematology.

[63]  P. Jeggo,et al.  Potential Role for 53BP1 in DNA End-joining Repair through Direct Interaction with DNA* , 2003, Journal of Biological Chemistry.

[64]  F. Gergely,et al.  BRCA1-independent ubiquitination of FANCD2. , 2003, Molecular cell.

[65]  J. Sale,et al.  Rev1 is essential for DNA damage tolerance and non‐templated immunoglobulin gene mutation in a vertebrate cell line , 2003, The EMBO journal.

[66]  Y. Pommier,et al.  Conversion of Topoisomerase I Cleavage Complexes on the Leading Strand of Ribosomal DNA into 5′-Phosphorylated DNA Double-Strand Breaks by Replication Runoff , 2000, Molecular and Cellular Biology.

[67]  A. Bowcock,et al.  The C-terminal (BRCT) Domains of BRCA1 Interact in Vivo with CtIP, a Protein Implicated in the CtBP Pathway of Transcriptional Repression* , 1998, The Journal of Biological Chemistry.

[68]  Anne M. Bowcock,et al.  Identification of a RING protein that can interact in vivo with the BRCA1 gene product , 1996, Nature Genetics.

[69]  M. P. Carty,et al.  Complete Replication of Plasmid DNA Containing a Single UV-induced Lesion in Human Cell Extracts (*) , 1996, The Journal of Biological Chemistry.

[70]  G. Maga,et al.  DNA polymerase beta bypasses in vitro a single d(GpG)-cisplatin adduct placed on codon 13 of the HRAS gene. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[71]  A. Rahmouni,et al.  Interstrand cross-links are preferentially formed at the d(GC) sites in the reaction between cis-diamminedichloroplatinum (II) and DNA. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Weill,et al.  A hyperconversion mechanism generates the chicken light chain preimmune repertoire , 1987, Cell.