A Variational Formulation of a Stabilized Unsplit Convolutional Perfectly Matched Layer for The Isotropic or Anisotropic Seismic Wave Equation

In the context of the numerical simulation of seismic wave propagation, the perfectly matched layer (PML) absorbing boundary condition has proven to be efficient to absorb surface waves as well as body waves with non grazing incidence. But unfortunately the classical discrete PML generates spurious modes traveling and growing along the absorbing layers in the case of waves impinging the boundary at grazing incidence. This is significant in the case of thin mesh slices, or in the case of sources located close to the absorbing boundaries or receivers located at large offset. In previous work we derived an unsplit convolutional PML (CPML) for staggered-grid finite-difference integration schemes to improve the efficiency of the PML at grazing incidence for seismic wave propagation. In this article we derive a variational formulation of this CPML method for the seismic wave equation and validate it using the spectral-element method based on a hybrid first/secondorder time integration scheme. Using the Newmark time marching scheme, we underline the fact that a velocity-stress formulation in the PML and a second-order displacement formulation in the inner computational domain match perfectly at the entrance of the absorbing layer. The main difference between our unsplit CPML and the split GFPML formulation of Festa and Vilotte (2005) lies in the fact that memory storage of CPML is reduced by 35% in 2D and 44% in 3D. Furthermore the CPML can be stabilized by correcting the damping profiles in the PML layer in the anisotropic case. We show benchmarks for 2D heterogeneous thin slices in the presence of a free surface and in anisotropic cases that are intrinsically unstable if no stabilization of the PML is used. Keyword: Perfectly matched layers, Spectral elements, Boundary conditions, 1 Universite de Pau et des Pays de l’Adour, CNRS and INRIA Magique-3D. Laboratoire de Modelisation et Imagerie en Geosciences UMR 5212, Avenue de l’Universite, 64013 Pau cedex, France. E-mail:roland.martin@univ-pau.fr, dimitri.komatitsch@univ-pau.fr 2 Institut universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France. 3 Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506-0046, USA. E-mail:gedney@engr.uky.edu A Variational Formulation of a Stabilized Unsplit Layer 275

[1]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[2]  D. She,et al.  An eigenvalue decomposition method to construct absorbing boundary conditions for acoustic and elastic wave equations , 2005 .

[3]  Roland Martin,et al.  WAVE PROPAGATION IN 2-D ELASTIC MEDIA USING A SPECTRAL ELEMENT METHOD WITH TRIANGLES AND QUADRANGLES , 2001 .

[4]  Kristel C. Meza-Fajardo,et al.  A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis , 2008 .

[5]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[6]  M. Guddati,et al.  Continued fraction absorbing boundary conditions for convex polygonal domains , 2006 .

[7]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[8]  Gary Cohen,et al.  Mixed Spectral Finite Elements for the Linear Elasticity System in Unbounded Domains , 2005, SIAM J. Sci. Comput..

[9]  Roland Martin,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media , 2008 .

[10]  M. Nafi Toksöz,et al.  An optimal absorbing boundary condition for elastic wave modeling , 1995 .

[11]  J. Bérenger,et al.  Application of the CFS PML to the absorption of evanescent waves in waveguides , 2002, IEEE Microwave and Wireless Components Letters.

[12]  Sandrine Fauqueux Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d'ondes élastiques en régime transitoire. (Mixed spectral finite elements method and perfectly matched layers to model the propagation of elastic waves during time) , 2003 .

[13]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[14]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .

[15]  Peter Moczo,et al.  EFFICIENCY AND OPTIMIZATION OF THE 3-D FINITE-DIFFERENCE MODELING OF SEISMIC GROUND MOTION , 2001 .

[16]  Roland Martin,et al.  Simulation of Seismic Wave Propagation in an Asteroid Based upon an Unstructured MPI Spectral-Element Method: Blocking and Non-blocking Communication Strategies , 2008, VECPAR.

[17]  J.-P. Wrenger,et al.  Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs , 2002 .

[18]  Qing Huo Liu,et al.  PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION , 1996 .

[19]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[20]  Shuo Ma,et al.  Modeling of the Perfectly Matched Layer Absorbing Boundaries and Intrinsic Attenuation in Explicit Finite-Element Methods , 2006 .

[21]  Z. Alterman,et al.  Propagation of elastic waves in layered media by finite difference methods , 1968 .

[22]  Qing Huo Liu,et al.  The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media , 2001 .

[23]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[24]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[25]  Delfim Soares,et al.  An Explicit Multi-Level Time-Step Algorithm to Model the Propagation of Interacting Acoustic-Elastic Waves Using Finite Element/Finite Difference Coupled Procedures , 2007 .

[26]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[27]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[28]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[29]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[30]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[31]  Hiroshi Kawase,et al.  Time-domain response of a semi-circular canyon for incident SV, P, and Rayleigh waves calculated by the discrete wavenumber boundary element method , 1988 .

[32]  Dan Givoli,et al.  Computational Absorbing Boundaries , 2008 .

[33]  B. Engquist,et al.  Absorbing boundary conditions for acoustic and elastic wave equations , 1977, Bulletin of the Seismological Society of America.

[34]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[35]  Francisco J. Sánchez-Sesma,et al.  DIFFRACTION OF P, SV AND RAYLEIGH WAVES BY TOPOGRAPHIC FEATURES: A BOUNDARY INTEGRAL FORMULATION , 1991 .

[36]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[37]  J. Carcione The wave equation in generalized coordinates , 1994 .

[38]  R. Higdon Absorbing boundary conditions for elastic waves , 1991 .

[39]  R. Madariaga Dynamics of an expanding circular fault , 1976, Bulletin of the Seismological Society of America.

[40]  Ekkehart Tessmer,et al.  3-D elastic modeling with surface topography by a Chebychev spectral method , 1994 .

[41]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[42]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[43]  Patrick Joly,et al.  Mathematical Modelling and Numerical Analysis on the Analysis of B ´ Erenger's Perfectly Matched Layers for Maxwell's Equations , 2022 .

[44]  S. Gedney,et al.  An Auxiliary Differential Equation Formulation for the Complex-Frequency Shifted PML , 2010, IEEE Transactions on Antennas and Propagation.

[45]  Perfectly matched layer for acoustic waveguide modeling --- benchmark calculations and perturbation analysis , 2007 .

[46]  J. Vilotte,et al.  The Newmark scheme as velocity–stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics , 2005 .

[47]  Alexandre Fournier,et al.  A 2‐D spectral‐element method for computing spherical‐earth seismograms—II. Waves in solid–fluid media , 2008 .

[48]  Raymond J. Luebbers,et al.  FDTD for Nth-order dispersive media , 1992 .

[49]  A. Giannopoulos,et al.  A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .

[50]  A. Chopra,et al.  Perfectly matched layers for transient elastodynamics of unbounded domains , 2004 .

[51]  Ushnish Basu,et al.  Explicit finite element perfectly matched layer for transient three‐dimensional elastic waves , 2009 .

[52]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[53]  Chrysoula Tsogka,et al.  Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .

[54]  Jan S. Hesthaven,et al.  Long Time Behavior of the Perfectly Matched Layer Equations in Computational Electromagnetics , 2002, J. Sci. Comput..

[55]  R. Stacey,et al.  Improved transparent boundary formulations for the elastic-wave equation , 1988 .

[56]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[57]  D. Soares,et al.  Numerical Computation of Space Derivatives by the Complex-Variable-Differentiation Method in the Convolution Quadrature Method Based BEM Formulation , 2008 .

[58]  James S. Sochacki,et al.  Absorbing boundary conditions and surface waves , 1987 .

[59]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[60]  Roland Martin,et al.  Multiple Scattering of Elastic Waves by Subsurface Fractures and Cavities , 2006 .

[61]  John Lysmer,et al.  A Finite Element Method for Seismology , 1972 .

[62]  É. Delavaud,et al.  Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations , 2005 .

[63]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .