Evolutionary Neuro-Fuzzy Systems and Applications

In recent years, the use of hybrid soft computing methods has shown that in various applications the synergism of several techniques is superior to a single technique. For example, the use of a neural fuzzy system and an evolutionary fuzzy system hybridises the approximate reasoning mechanism of fuzzy systems with the learning capabilities of neural networks and evolutionary algorithms. Evolutionary neural systems hybridise the neurocomputing approach with the solution-searching ability of evolutionary computing. Such hybrid methodologies retain limitations that can be overcome with full integration of the three basic soft computing paradigms, and this leads to evolutionary neural fuzzy systems. The objective of this chapter is to provide an account of hybrid soft computing systems, with special attention to the combined use of evolutionary algorithms and neural networks in order to endow fuzzy systems with learning and adaptive capabilities. After an introduction to basic soft computing paradigms, the various forms of hybridisation are considered, which results in evolutionary neural fuzzy systems. The chapter also describes a particular approach that jointly uses neural learning and genetic optimisation to learn a fuzzy model from the given data and to optimise it for accuracy and interpretability.

[1]  Chuen-Tsai Sun,et al.  Rule-base structure identification in an adaptive-network-based fuzzy inference system , 1994, IEEE Trans. Fuzzy Syst..

[2]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[3]  Lakhmi C. Jain,et al.  Using genetic algorithms with grammar encoding to generate neural networks , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[4]  Rudolf Kruse,et al.  A neural fuzzy controller learning by fuzzy error propagation , 1992 .

[5]  Francisco Herrera,et al.  Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems , 2001, Fuzzy Sets Syst..

[6]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[7]  Gilles Venturini,et al.  SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attributes based Concepts , 1993, ECML.

[8]  Abdellatif Rahmoun,et al.  A genetic-based neuro-fuzzy generator: NEFGEN , 2001, Proceedings ACS/IEEE International Conference on Computer Systems and Applications.

[9]  Francisco Herrera,et al.  Genetic Algorithms and Soft Computing , 1996 .

[10]  Yaochu Jin,et al.  Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement , 2000, IEEE Trans. Fuzzy Syst..

[11]  Yaochu Jin,et al.  Advanced fuzzy systems design and applications , 2003, Studies in Fuzziness and Soft Computing.

[12]  Hisao Ishibuchi,et al.  Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[13]  Agostinho C. Rosa,et al.  Evolutionary fuzzy neural networks automatic design of rule based controllers of nonlinear delayed systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[14]  Magne Setnes,et al.  Compact and transparent fuzzy models and classifiers through iterative complexity reduction , 2001, IEEE Trans. Fuzzy Syst..

[15]  Lotfi A. Zadeh,et al.  Fuzzy logic, neural networks, and soft computing , 1993, CACM.

[16]  Peter M. Todd,et al.  Designing Neural Networks using Genetic Algorithms , 1989, ICGA.

[17]  Yugeng Xi,et al.  Neural network design based on evolutionary programming , 1997, Artif. Intell. Eng..

[18]  W. Pedrycz,et al.  OR/AND neuron in modeling fuzzy set connectives , 1994, IEEE Trans. Fuzzy Syst..

[19]  G. Sheblé,et al.  Refined genetic algorithm-economic dispatch example , 1995 .

[20]  Takeshi Furuhashi,et al.  Evolutionary fuzzy modeling using fuzzy neural networks and genetic algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[21]  David J. Chalmers,et al.  The Evolution of Learning: An Experiment in Genetic Connectionism , 1991 .

[22]  Sankar K. Pal,et al.  Review Neuro-fuzzy computing for image processing and pattern recognition , 1996, Int. J. Syst. Sci..

[23]  Sushmita Mitra,et al.  Neuro-fuzzy rule generation: survey in soft computing framework , 2000, IEEE Trans. Neural Networks Learn. Syst..

[24]  Uzay Kaymak,et al.  Similarity measures in fuzzy rule base simplification , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Giovanna Castellano,et al.  An approach to structure identification of fuzzy models , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[26]  Jacek M. Leski,et al.  Fuzzy and Neuro-Fuzzy Intelligent Systems , 2000, Studies in Fuzziness and Soft Computing.

[27]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[28]  J. Casillas Interpretability issues in fuzzy modeling , 2003 .

[29]  Nikola K. Kasabov,et al.  HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems , 1999, Neural Networks.

[30]  Yoshua Bengio,et al.  On the Optimization of a Synaptic Learning Rule , 2007 .

[31]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[32]  Chia-Ju Wu,et al.  Design of fuzzy logic controllers using genetic algorithms , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[33]  Arthur C. Sanderson,et al.  Fuzzy logic controlled genetic algorithms versus tuned genetic algorithms: an agile manufacturing application , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[34]  T. Van Le Evolutionary fuzzy clustering , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[35]  Xin Yao,et al.  A Preliminary Study on Designing Artiicial Neural Networks Using Co-evolution , 1995 .

[36]  Hisao Ishibuchi,et al.  Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems , 1997, Fuzzy Sets Syst..

[37]  Sankar K. Pal,et al.  Neuro-Fuzzy Pattern Recognition: Methods in Soft Computing , 1999 .

[38]  H. Ishibuchi Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases , 2004 .

[39]  Antonio González Muñoz,et al.  SLAVE: a genetic learning system based on an iterative approach , 1999, IEEE Trans. Fuzzy Syst..

[40]  Chun-Hee Woo,et al.  Evolutionary design of fuzzy rule base for nonlinear system modeling and control , 2000, IEEE Trans. Fuzzy Syst..

[41]  Young-Joon Kim,et al.  Off-line recognition of totally unconstrained handwritten numerals using multilayer cluster neural network , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[42]  Antonio González Muñoz,et al.  Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm , 2001, Fuzzy Sets Syst..

[43]  Giovanna Castellano,et al.  Simplifying a neuro-fuzzy model , 1996, Neural Processing Letters.

[44]  Andrea Bonarini,et al.  Evolutionary Learning of Fuzzy rules: competition and cooperation , 1996 .

[45]  Shigeo Abe,et al.  Neural Networks and Fuzzy Systems , 1996, Springer US.

[46]  Chin-Teng Lin,et al.  An On-Line Self-Constructing Neural Fuzzy Inference Network and Its Applications , 1998 .

[47]  David B. Fogel,et al.  Evolving Neural Control Systems , 1995, IEEE Expert.

[48]  Kwang Bo Cho,et al.  Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction , 1996, Fuzzy Sets Syst..

[49]  Plamen Angelov,et al.  Evolving Rule-Based Models: A Tool For Design Of Flexible Adaptive Systems , 2002 .

[50]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[51]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[52]  Hamid R. Berenji,et al.  Learning and tuning fuzzy logic controllers through reinforcements , 1992, IEEE Trans. Neural Networks.

[53]  C.A. Perez,et al.  Improvements on handwritten digit recognition by genetic selection of neural network topology and by augmented training , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[54]  Antonio González Muñoz,et al.  An experimental study about the search mechanism in the SLAVE learning algorithm: Hill-climbing methods versus genetic algorithms , 2001, Inf. Sci..

[55]  D Wang,et al.  Use of fuzzy-logic-inspired features to improve bacterial recognition through classifier fusion , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[56]  Chin-Teng Lin,et al.  An online self-constructing neural fuzzy inference network and its applications , 1998, IEEE Trans. Fuzzy Syst..

[57]  Elie Sanchez,et al.  Soft computing perspectives , 1994, Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94).

[58]  Jean-Lien C. Wu,et al.  Parameter Adjustment Using Neural-Network-Based Genetic Algorithms for Guaranteed QOS in ATM Networks , 1995 .

[59]  Jacek M. Zurada,et al.  Computational Intelligence: Imitating Life , 1994 .

[60]  T. Furuhashi,et al.  Fusion of fuzzy/neuro/evolutionary computing for knowledge acquisition , 2001, Proc. IEEE.

[61]  Francisco Sandoval Hernández,et al.  Genetic Synthesis of Discrete-Time Recurrent Neural Network , 1993, IWANN.

[62]  Ching-Chang Wong,et al.  Switching-type fuzzy controller design by genetic algorithms , 1995, Fuzzy Sets Syst..

[63]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[64]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[65]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[66]  Jean-Michel Renders,et al.  Optimization of fuzzy expert systems using genetic algorithms and neural networks , 1995, IEEE Trans. Fuzzy Syst..

[67]  Alistair Munro,et al.  Evolving fuzzy rule based controllers using genetic algorithms , 1996, Fuzzy Sets Syst..

[68]  Abdollah Homaifar,et al.  Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[69]  James J. Buckley,et al.  Fuzzy and Neural: Interactions and Applications , 1999 .

[70]  James J. Buckley,et al.  On the equivalence of neural nets and fuzzy expert systems , 1999 .

[71]  Antonio F. Gómez-Skarmeta,et al.  Fuzzy modeling with hybrid systems , 1999, Fuzzy Sets Syst..

[72]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[73]  Sushmita Mitra,et al.  Fuzzy MLP based expert system for medical diagnosis , 1994, CVPR 1994.

[74]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[75]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[76]  Richard Lai,et al.  Constraining the optimization of a fuzzy logic controller using an enhanced genetic algorithm , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[77]  Minsup Shim,et al.  Application of evolutionary computations at LG Electronics , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[78]  Marco Russo,et al.  Medicinal Chemistry and Fuzzy Logic , 1998, Inf. Sci..

[79]  Tianmin Huang,et al.  GENETIC OPTIMIZATION WITH FUZZY DECODING , 2000 .

[80]  Stephen F. Smith,et al.  A learning system based on genetic adaptive algorithms , 1980 .

[81]  José Valente de Oliveira,et al.  Towards neuro-linguistic modeling: Constraints for optimization of membership functions , 1999, Fuzzy Sets Syst..

[82]  John H. Holland,et al.  Cognitive systems based on adaptive algorithms , 1977, SGAR.

[83]  Pierre-Yves Glorennec Coordination between autonomous robots , 1997, Int. J. Approx. Reason..

[84]  Garrison W. Greenwood Training partially recurrent neural networks using evolutionary strategies , 1997, IEEE Trans. Speech Audio Process..

[85]  D. Fogel Phenotypes, genotypes, and operators in evolutionary computation , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[86]  Andreas Bastian Identifying fuzzy models utilizing genetic programming , 2000, Fuzzy Sets Syst..

[87]  Ajith Abraham EvoNF: a framework for optimization of fuzzy inference systems using neural network learning and evolutionary computation , 2002, Proceedings of the IEEE Internatinal Symposium on Intelligent Control.

[88]  Uwe D. Hanebeck,et al.  Genetic optimization of fuzzy networks , 1996, Fuzzy Sets Syst..

[89]  Raúl Hector Gallard,et al.  Genetic algorithms + Data structure = Evolution programs , Zbigniew Michalewicz , 1999 .

[90]  Chih-Ming Chen,et al.  An efficient fuzzy classifier with feature selection based on fuzzy entropy , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[91]  Andreas Geyer-Schulz,et al.  Fuzzy Rule-Based Expert Systems and Genetic Machine Learning , 1996 .

[92]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[93]  R. E. Uhrig,et al.  Using genetic algorithms to select inputs for neural networks , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[94]  Fang Jian,et al.  Neural network design based on evolutionary programming , 1997 .

[95]  Rudolf Kruse,et al.  Neuro-fuzzy systems for function approximation , 1999, Fuzzy Sets Syst..

[96]  Xin Yao,et al.  Towards designing artificial neural networks by evolution , 1998 .

[97]  Francisco Herrera,et al.  Tuning fuzzy logic controllers by genetic algorithms , 1995, Int. J. Approx. Reason..

[98]  Frank Hoffmann,et al.  Evolutionary design of a fuzzy knowledge base for a mobile robot , 1997, Int. J. Approx. Reason..

[99]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[100]  John H. Holland,et al.  COGNITIVE SYSTEMS BASED ON ADAPTIVE ALGORITHMS1 , 1978 .

[101]  Chin-Teng Lin,et al.  A GA-based fuzzy adaptive learning control network , 2000, Fuzzy Sets Syst..

[102]  Rudolf Kruse,et al.  New Learning Strategies for NEFCLASS , 1997 .

[103]  Nikola Kasabov,et al.  Foundations Of Neural Networks, Fuzzy Systems, And Knowledge Engineering [Books in Brief] , 1996, IEEE Transactions on Neural Networks.

[104]  Francisco Herrera,et al.  A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples , 1997, Int. J. Approx. Reason..

[105]  Piero P. Bonissone,et al.  Genetic algorithms for automated tuning of fuzzy controllers: a transportation application , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[106]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[107]  M. Lozano,et al.  MOGUL: A methodology to obtain genetic fuzzy rule‐based systems under the iterative rule learning approach , 1999 .

[108]  Donald A. Waterman,et al.  Pattern-Directed Inference Systems , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[109]  Sankar K. Pal,et al.  Multilayer perceptron, fuzzy sets, and classification , 1992, IEEE Trans. Neural Networks.

[110]  H. B. Gürocak,et al.  A genetic-algorithm-based method for tuning fuzzy logic controllers , 1999, Fuzzy Sets Syst..

[111]  B. H. Gwee,et al.  A GA paradigm for learning fuzzy rules , 1996, Fuzzy Sets Syst..

[112]  Detlef Nauck,et al.  Foundations Of Neuro-Fuzzy Systems , 1997 .

[113]  Michael J. Watts,et al.  Genetic Algorithms for the Design of Fuzzy Neural Networks , 1998, ICONIP.

[114]  Marzuki Khalid,et al.  Tuning of a neuro-fuzzy controller by genetic algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[115]  Matthew A. Kupinski,et al.  Feature selection and classifiers for the computerized detection of mass lesions in digital mammography , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[116]  Giovanna Castellano,et al.  Knowledge discovery by a neuro-fuzzy modeling framework , 2005, Fuzzy Sets Syst..

[117]  Hideyuki Takagi,et al.  Neural networks designed on approximate reasoning architecture and their applications , 1992, IEEE Trans. Neural Networks.

[118]  Wei Yan,et al.  A hybrid genetic/BP algorithm and its application for radar target classification , 1997, Proceedings of the IEEE 1997 National Aerospace and Electronics Conference. NAECON 1997.

[119]  John R. Koza Genetic Programming III - Darwinian Invention and Problem Solving , 1999, Evolutionary Computation.

[120]  Nadine N. Tschichold-Gürman,et al.  Generation and improvement of fuzzy classifiers with incremental learning using fuzzy RuleNet , 1995, SAC '95.

[121]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[122]  Ignacio Requena,et al.  Are artificial neural networks black boxes? , 1997, IEEE Trans. Neural Networks.

[123]  Moshe Sipper,et al.  Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling , 2001, IEEE Trans. Fuzzy Syst..

[124]  Sina Balkir,et al.  Evolution-based design of neural fuzzy networks using self-adapting genetic parameters , 2002, IEEE Trans. Fuzzy Syst..

[125]  Sankar K. Pal,et al.  Fuzzy multi-layer perceptron, inferencing and rule generation , 1995, IEEE Trans. Neural Networks.

[126]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[127]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[128]  Francesco Beritelli,et al.  Robust phase reversal tone detection using soft computing , 1995, Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society.

[129]  Héctor Pomares,et al.  Multidimensional and multideme genetic algorithms for the construction of fuzzy systems , 2001, Int. J. Approx. Reason..

[130]  Riccardo Poli,et al.  Evolving the Topology and the Weights of Neural Networks Using a Dual Representation , 2004, Applied Intelligence.

[131]  Adel M. Alimi,et al.  An evolutionary neuro-fuzzy approach to recognize on-line Arabic handwriting , 1997, Proceedings of the Fourth International Conference on Document Analysis and Recognition.

[132]  Shun'ichi Tano,et al.  Deep combination of fuzzy inference and neural network in fuzzy inference software - FINEST , 1996, Fuzzy Sets Syst..

[133]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[134]  B. Yegnanarayana,et al.  An evolutionary programming-based probabilistic neural networks construction technique , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[135]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[136]  Magne Setnes,et al.  GA-fuzzy modeling and classification: complexity and performance , 2000, IEEE Trans. Fuzzy Syst..

[137]  Marco Russo,et al.  FuGeNeSys-a fuzzy genetic neural system for fuzzy modeling , 1998, IEEE Trans. Fuzzy Syst..

[138]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[139]  Xin Yao,et al.  EPNet for Chaotic Time-Series Prediction , 1996, SEAL.

[140]  Takanori Shibata,et al.  Genetic Algorithms And Fuzzy Logic Systems Soft Computing Perspectives , 1997 .

[141]  John R. Koza,et al.  Genetic Programming as a Darwinian Invention Machine , 1999, EuroGP.

[142]  Yoichi Hayashi,et al.  Neural expert system using fuzzy teaching input and its application to medical diagnosis , 1994 .

[143]  John R. Koza,et al.  Routine human-competitive machine intelligence by means of genetic programming , 2004, SPIE Optics + Photonics.

[144]  Toby Berger,et al.  Reliable On-Line Human Signature Verification Systems , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[145]  Witold Pedrycz,et al.  Fuzzy evolutionary computation , 1997 .

[146]  Tzung-Pei Hong,et al.  Learning discriminant functions with fuzzy attributes for classification using genetic programming , 2002, Expert systems with applications.

[147]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[148]  J. Bezdek,et al.  Genetic fuzzy clustering , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[149]  Yanqing Zhang,et al.  Evolutionary fuzzy neural networks for hybrid financial prediction , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[150]  Roy George,et al.  Fuzzy clustering with genetic search , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[151]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[152]  Donna L. Hudson,et al.  Use of neural network techniques in a medical expert system , 1991 .

[153]  James J. Buckley,et al.  Numerical relationships between neural networks, continuous functions, and fuzzy systems , 1993 .

[154]  Peter J. B. Hancock,et al.  Genetic algorithms and permutation problems: a comparison of recombination operators for neural net structure specification , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[155]  Rudolf Kruse,et al.  Generating classification rules with the neuro-fuzzy system NEFCLASS , 1996, Proceedings of North American Fuzzy Information Processing.

[156]  Giovanna Castellano,et al.  Fuzzy inference and rule extraction using a neural network , 2000 .

[157]  David B. Fogel,et al.  Alternative Neural Network Training Methods , 1995, IEEE Expert.

[158]  James J. Buckley,et al.  Approximations between fuzzy expert systems and neural networks , 1994, Int. J. Approx. Reason..

[159]  Xin Yao,et al.  Making use of population information in evolutionary artificial neural networks , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[160]  Sofiane Achiche,et al.  Fuzzy decision support system knowledge base generation using a genetic algorithm , 2001, Int. J. Approx. Reason..

[161]  James M. Keller,et al.  Incorporating Fuzzy Membership Functions into the Perceptron Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[162]  Robert G. Reynolds,et al.  Evolutionary computation: Towards a new philosophy of machine intelligence , 1997 .

[163]  Derek A. Linkens,et al.  Evolutionary learning in neural fuzzy control systems , 1997 .

[164]  Fernando José Von Zuben,et al.  Coevolutionary genetic fuzzy systems: a hierarchical collaborative approach , 2004, Fuzzy Sets Syst..

[165]  Witold Pedrycz,et al.  Fuzzy neural networks and neurocomputations , 1993 .

[166]  María José del Jesús,et al.  Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems , 2001, Inf. Sci..

[167]  Nadine N. Tschichold-Gürman,et al.  FUN: optimization of fuzzy rule based systems using neural networks , 1993, IEEE International Conference on Neural Networks.

[168]  J.Ma Troya Linero,et al.  Evolutionary design of fuzzy logic controllers using strongly-typed GP , 1999 .

[169]  Hisao Ishibuchi,et al.  Three-objective genetics-based machine learning for linguistic rule extraction , 2001, Inf. Sci..

[170]  Witold Pedrycz,et al.  Fuzzy-set based models of neurons and knowledge-based networks , 1993, IEEE Trans. Fuzzy Syst..

[171]  Paul Schwefel On the Evolution of Evolutionary Computation Hans – , 1994 .

[172]  H. Ishigami,et al.  Structure optimization of fuzzy neural network by genetic algorithm , 1995 .

[173]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[174]  Abraham Kandel,et al.  Compensatory Genetic Fuzzy Neural Networks and Their Applications , 1998, Series in Machine Perception and Artificial Intelligence.

[175]  Kyu Ho Park,et al.  Fast learning method for back-propagation neural network by evolutionary adaptation of learning rates , 1996, Neurocomputing.

[176]  C. S. George Lee,et al.  Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems , 1996 .

[177]  Plamen Angelov,et al.  Evolving Rule-Based Models: A Tool For Design Of Flexible Adaptive Systems , 2002 .

[178]  Alexandre Parodi,et al.  A New Approach to Fuzzy Classifier Systems , 1993, ICGA.

[179]  Samy Bengio,et al.  Generalization of a Parametric Learning Rule , 1993 .

[180]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[181]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[182]  Yu-Geng Xi,et al.  Nonlinear system modeling by competitive learning and adaptive fuzzy inference system , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[183]  Chuen-Tsai Sun,et al.  Functional equivalence between radial basis function networks and fuzzy inference systems , 1993, IEEE Trans. Neural Networks.

[184]  Lalit M. Patnaik,et al.  Learning neural network weights using genetic algorithms-improving performance by search-space reduction , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[185]  John R. Koza,et al.  Genetic Programming IV: Routine Human-Competitive Machine Intelligence , 2003 .

[186]  Kevin D. Reilly,et al.  Genetic learning algorithms for fuzzy neural nets , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[187]  Juan R. Velasco Genetic-based on-line learning for fuzzy process control , 1998, Int. J. Intell. Syst..

[188]  Seppo J. Ovaska,et al.  Industrial applications of soft computing: a review , 2001, Proc. IEEE.

[189]  P. Nordin Genetic Programming III - Darwinian Invention and Problem Solving , 1999 .

[190]  J. Paetz Evolutionary optimization of weights of a neuro-fuzzy classifier and the effects on benchmark data and complex chemical data , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[191]  L. Darrell Whitley,et al.  Genetic algorithms and neural networks: optimizing connections and connectivity , 1990, Parallel Comput..

[192]  James M. Keller,et al.  Neural network implementation of fuzzy logic , 1992 .

[193]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[194]  Germano Lambert-Torres,et al.  A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems , 1998, IEEE Trans. Neural Networks.

[195]  Oliver Nelles,et al.  Genetic programming for model selection of TSK-fuzzy systems , 2001, Inf. Sci..

[196]  James F. Frenzel,et al.  Training product unit neural networks with genetic algorithms , 1993, IEEE Expert.

[197]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[198]  Jyh-Shing Roger Jang,et al.  Evolving color recipes , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[199]  Sankar K. Pal,et al.  Fuzzy self-organization, inferencing, and rule generation , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[200]  G. Klir,et al.  Evolutionary fuzzy c-means clustering algorithm , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[201]  Xin Yao,et al.  Towards Designing Neural Network Ensembles by Evolution , 1998, PPSN.