A Zero-Temperature Quantum Monte Carlo Algorithm and Quantum Spin Glasses
暂无分享,去创建一个
[1] E. Tosatti,et al. Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .
[2] E. Tosatti,et al. Quantum annealing of the traveling-salesman problem. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[3] Monte Carlo method for obtaining the ground-state properties of quantum spin systems. , 1996, Physical review. B, Condensed matter.
[4] M. J. Oliveira,et al. Monte Carlo simulation of the quantum transverse Ising model , 1997 .
[5] R. Car,et al. Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.
[6] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[7] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[8] Rosenbaum,et al. Quantum annealing of a disordered magnet , 1999, Science.
[9] Bikas K Chakrabarti,et al. Quantum annealing in a kinetically constrained system. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] Erio Tosatti,et al. Quantum to classical and back , 2007 .
[11] D. Vere-Jones. Markov Chains , 1972, Nature.
[12] B. Chakrabarti,et al. Quantum Annealing and Related Optimization Methods , 2008 .
[13] R. Somma,et al. Quantum approach to classical statistical mechanics. , 2006, Physical review letters.
[14] B. Chakrabarti,et al. Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.
[15] Quantum annealing of an Ising spin-glass by Green's function Monte Carlo. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] F. Barahona. On the computational complexity of Ising spin glass models , 1982 .
[17] B. Chakrabarti,et al. Reaching the ground state of a quantum spin glass using a zero-temperature quantum Monte Carlo method. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.