A Zero-Temperature Quantum Monte Carlo Algorithm and Quantum Spin Glasses

This technique helps determine key properties of the quantum Hamiltonian's ground state and tunes quantum fluctuations to help users find optimized solutions to computationally hard problems.

[1]  E. Tosatti,et al.  Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .

[2]  E. Tosatti,et al.  Quantum annealing of the traveling-salesman problem. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Monte Carlo method for obtaining the ground-state properties of quantum spin systems. , 1996, Physical review. B, Condensed matter.

[4]  M. J. Oliveira,et al.  Monte Carlo simulation of the quantum transverse Ising model , 1997 .

[5]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[6]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[7]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[8]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[9]  Bikas K Chakrabarti,et al.  Quantum annealing in a kinetically constrained system. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Erio Tosatti,et al.  Quantum to classical and back , 2007 .

[11]  D. Vere-Jones Markov Chains , 1972, Nature.

[12]  B. Chakrabarti,et al.  Quantum Annealing and Related Optimization Methods , 2008 .

[13]  R. Somma,et al.  Quantum approach to classical statistical mechanics. , 2006, Physical review letters.

[14]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[15]  Quantum annealing of an Ising spin-glass by Green's function Monte Carlo. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[17]  B. Chakrabarti,et al.  Reaching the ground state of a quantum spin glass using a zero-temperature quantum Monte Carlo method. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.