A quantitative improvement for Roth's theorem on arithmetic progressions

We improve the quantitative estimate for Roth's theorem on three‐term arithmetic progressions, showing that if A⊂{1,...,N} contains no non‐trivial three‐term arithmetic progressions, then |A|≪N(loglogN)4/logN . By the same method, we also improve the bounds in the analogous problem over Fq[t] and for the problem of finding long arithmetic progressions in a sumset.

[1]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[2]  K. F. Roth On Certain Sets of Integers , 1953 .

[3]  D. R. Heath-Brown Integer Sets Containing No Arithmetic Progressions , 1987 .

[4]  Vojtech Rödl,et al.  On subsets of abelian groups with no 3-term arithmetic progression , 1987, J. Comb. Theory, Ser. A.

[5]  Endre Szemerédi,et al.  Integer sets containing no arithmetic progressions , 1990 .

[6]  Imre Z. Ruzsa,et al.  Arithmetic progressions in sumsets , 1991 .

[7]  Roy Meshulam,et al.  On Subsets of Finite Abelian Groups with No 3-Term Arithmetic Progressions , 1995, J. Comb. Theory, Ser. A.

[8]  Jean Bourgain,et al.  On Triples in Arithmetic Progression , 1999 .

[9]  Mei-Chu Chang A polynomial bound in Freiman's theorem , 2002 .

[10]  I. Shkredov On sumsets of dissociated sets , 2007, 0712.1074.

[11]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[12]  Jean Bourgain,et al.  Roth’s theorem on progressions revisited , 2008 .

[13]  T. Sanders Additive structures in sumsets , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  I. Shkredov On sets of large trigonometric sums , 2008 .

[15]  A GENERALIZATION OF ROTH'S THEOREM IN FUNCTION FIELDS , 2009 .

[16]  Tom Sanders,et al.  On certain other sets of integers , 2010, 1007.5444.

[17]  T. Sanders On Roth's theorem on progressions , 2010, 1011.0104.

[18]  Michael Bateman,et al.  New Bounds on cap sets , 2011, 1101.5851.

[19]  Thomas Bloom Translation invariant equations and the method of Sanders , 2012 .

[21]  Izabella Laba,et al.  Arithmetic Progressions in Sumsets and Lp-Almost-Periodicity , 2011, Combinatorics, Probability and Computing.