Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas

In flat sedimentary plains in areas with a sub-humid climate, as a result of deep rooting and high water uptake of trees, groundwater levels drop and subsurface salt accumulation increases under tree plantations. Tree planting has expanded globally and its effects were studied in the Great Hungarian Plain where forests are planted in a region with widespread shallow groundwater. Accumulated tree biomass was positively correlated with soil salinization rates following tree planting, being also affected by species (poplar > common oak > black locust) and stand age. Differences among tree species effects appeared to be related to their growth rates.

[1]  A. Szabó,et al.  Comparison of an Oak Forest and of a Pasture Groundwater Uptake and Salt Dynamics on the Hungarian Great Plain , 2014 .

[2]  Yongli Cai,et al.  Spatial and seasonal variations of soil salinity following vegetation restoration in coastal saline land in eastern China , 2014 .

[3]  Marcelo D. Nosetto,et al.  Plantaciones Forestales: sus servicios e impactos hidrológicos , 2014 .

[4]  A. Szabó,et al.  Erdők hatása a talaj és altalaj sóforgalmára, valamint a talajvíz szintjére , 2012 .

[5]  Tord Johansson,et al.  Stump and Root Biomass of Poplar Stands , 2012 .

[6]  R. B. Jackson,et al.  Regional patterns and controls of ecosystem salinization with grassland afforestation along a rainfall gradient , 2008 .

[7]  T. J. Smith,et al.  Mangrove production and carbon sinks: A revision of global budget estimates , 2008 .

[8]  J. Szilágyi,et al.  Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations , 2008 .

[9]  R. B. Jackson,et al.  Groundwater and soil chemical changes under phreatophytic tree plantations , 2007 .

[10]  M. Nosetto,et al.  The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands , 2007, Oecologia.

[11]  James J. Butler,et al.  A field investigation of phreatophyte‐induced fluctuations in the water table , 2007 .

[12]  Esteban G. Jobbágy,et al.  Forestación en pastizales: hacia una visión integral de sus oportunidades y costos ecológicos , 2006, Agrociencia.

[13]  José M. Paruelo,et al.  Land‐use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina , 2005 .

[14]  R. B. Jackson,et al.  Groundwater use and salinization with grassland afforestation , 2004 .

[15]  Zoltan Andrasevits,et al.  CURRENT AFFORESTATION PRACTICE AND EXPECTED TRENDS ON FAMILY FARMS IN WEST HUNGARY , 2004 .

[16]  R. Munns Commercial Forest Plantations on Saline Lands , 2001 .

[17]  T. Tóth,et al.  Use of Digitalized Hydrogeological Maps for Evaluation of Salt-Affected Soils of Large Areas , 2001 .

[18]  I. Calder Water use by forests, limits and controls. , 1998, Tree physiology.

[19]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[20]  David S. G. Thomas,et al.  World atlas of desertification. , 1994 .

[21]  E. Lucot,et al.  Organisation du système racinaire du chêne pédonculé (Quercus robur) développé en conditions édaphiques non contraignantes (sol brun lessivé colluvial) , 1992 .

[22]  M. S. Ghilarov,et al.  Methods of productivity studies in root systems and rhizosphere organisms (U.S.S.R., 1968) , 1969, Pedobiologia.

[23]  J. Gleria,et al.  Bodenphysik und Bodenkolloidik , 1962 .

[24]  J. Magyar Fundamental problems in the construction of yield tables. , 1940 .