A machine vision system for defect characterization on transparent parts with non-plane surfaces

This contribution presents a machine vision system capable of revealing, detecting and characterizing defects on non-plane transparent surfaces. Because in this kind of surface, transparent and opaque defects can be found, special lighting conditions are required. Therefore, the cornerstone of this machine vision is the innovative lighting system developed. Thanks to this, the defect segmentation is straightforward and with a very low computational burden, allowing real-time inspection. To aid in the conception of the imaging conditions, the lighting system is completely described and also compared with other commercial lighting systems. In addition, for the defect segmentation, a new adaptive threshold selection algorithm is proposed. Finally, the system performance is assessed by conducting a series of tests using a commercial model of headlamp lens.

[1]  Eann A. Patterson,et al.  Location and shape measurement using a portable fringe projection system , 2005 .

[2]  Christophe Dumont,et al.  Lighting study for an optimal defects detection by artificial vision , 1997, Electronic Imaging.

[3]  Javier Gámez García,et al.  A dynamic lighting system for automated visual inspection of headlamp lenses , 2009, 2009 IEEE Conference on Emerging Technologies & Factory Automation.

[4]  Javier Gámez García,et al.  Robotic Software Architecture for Multisensor Fusion System , 2009, IEEE Transactions on Industrial Electronics.

[5]  J Leopold,et al.  New developments in fast 3D-surface quality control , 2003 .

[6]  Christophe Dumont,et al.  Vision system for defect imaging, detection, and characterization on a specular surface of a 3D object , 2002, Image Vis. Comput..

[7]  Fiona W.Y. Chan Reflective fringe pattern technique for subsurface crack detection , 2008 .

[8]  Lee E. Weiss,et al.  Specular surface inspection using structured highlight and Gaussian images , 1990, IEEE Trans. Robotics Autom..

[9]  Javier Gámez García,et al.  A sensor planning system for automated headlamp lens inspection , 2009, Expert Syst. Appl..

[10]  Alexander Hornberg Handbook of Machine Vision , 2006 .

[11]  Hui-Fuang Ng Automatic thresholding for defect detection , 2006, Pattern Recognit. Lett..

[12]  Ralph Seulin Conception et optimisation par simulation d'un système de vision artificielle pour l'inspection de surfaces parfaitement spéculaires , 2002 .

[13]  M. D. Valle,et al.  Mirror synthesis in a mechatronic system for superficial defect detection , 2003 .

[14]  Duke Gledhill,et al.  Surface measurement using active vision and light scattering , 2007 .

[15]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[16]  Sören Kammel,et al.  Inspection of specular and painted surfaces with centralized fusion techniques , 2006 .

[17]  Salah Bourennane,et al.  An Image Content Description Technique for the Inspection of Specular Objects , 2008, EURASIP J. Adv. Signal Process..

[18]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[19]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[20]  Tao Tao,et al.  Specular surface measurement by using a moving diffusive structured light source , 2007, SPIE/COS Photonics Asia.

[21]  Kiriakos N. Kutulakos,et al.  A Theory of Refractive and Specular 3D Shape by Light-Path Triangulation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  Giulio Rosati,et al.  Real-time defect detection on highly reflective curved surfaces , 2009 .

[23]  Frédéric Mérienne,et al.  Simulation of Specular Surface Imaging Based on Computer Graphics: Application on a Vision Inspection System , 2002, EURASIP J. Adv. Signal Process..

[24]  Ming-Hwei Perng,et al.  Reflection-area-based feature descriptor for solder joint inspection , 2007, Machine Vision and Applications.

[25]  John C. Russ,et al.  The Image Processing Handbook , 2016, Microscopy and Microanalysis.

[26]  Euripides G. M. Petrakis,et al.  A survey on industrial vision systems, applications, tools , 2003, Image Vis. Comput..

[27]  Axel Telljohann Introduction to Building a Machine Vision Inspection , 2007 .

[28]  Ralph Seulin,et al.  Dynamic lighting system for specular surface inspection , 2001, IS&T/SPIE Electronic Imaging.

[29]  B. Lamalle,et al.  Simulations of lighting for an optimal defect detection by artificial vision , 1997, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[30]  Anil K. Jain,et al.  A Survey of Automated Visual Inspection , 1995, Comput. Vis. Image Underst..

[31]  J. Gomez Ortega,et al.  SENSOR PLANNING FOR CARS HEADLAMPS INSPECTION USING EXPERT KNOWLEDGE , 2007 .

[32]  Hans-Peter Seidel,et al.  3D acquisition of mirroring objects using striped patterns , 2005, Graph. Model..

[33]  A. Sanchez Garcia,et al.  An automatic procedure to code the inspection guideline for vehicle headlamp lenses , 2009, 2009 IEEE International Conference on Mechatronics.

[34]  Irmgard Jahr,et al.  Lighting in Machine Vision , 2007 .