Two Bagging Algorithms with Coupled Learners to Encourage Diversity
暂无分享,去创建一个
Claudio Moraga | Héctor Allende | Ricardo Ñanculef | Carlos Valle | C. Moraga | H. Allende | C. Valle | Ricardo Ñanculef
[1] Kurt Hornik,et al. Artificial Neural Networks — ICANN 2001 , 2001, Lecture Notes in Computer Science.
[2] Leo Breiman,et al. Using Iterated Bagging to Debias Regressions , 2001, Machine Learning.
[3] Marc Toussaint,et al. Extracting Motion Primitives from Natural Handwriting Data , 2006, ICANN.
[4] Gavin Brown,et al. Diversity in neural network ensembles , 2004 .
[5] J. Friedman. Stochastic gradient boosting , 2002 .
[6] Alexander J. Smola,et al. Support Vector Regression Machines , 1996, NIPS.
[7] Raymond J. Mooney,et al. Combining Bias and Variance Reduction Techniques for Regression Trees , 2005, ECML.
[8] Massimiliano Pontil,et al. Stability of Randomized Learning Algorithms , 2005, J. Mach. Learn. Res..
[9] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[10] L. Breiman. OUT-OF-BAG ESTIMATION , 1996 .
[11] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[12] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[13] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[14] T. Poggio,et al. Bagging Regularizes , 2002 .
[15] Yves Grandvalet,et al. Bagging Equalizes Influence , 2004, Machine Learning.
[16] Xin Yao,et al. Ensemble learning via negative correlation , 1999, Neural Networks.
[17] Claudio Moraga,et al. Ensemble Learning with Local Diversity , 2006, ICANN.
[18] Yves Grandvalet. Bagging Can Stabilize without Reducing Variance , 2001, ICANN.