State–space model for light-based tracking of marine animals

A coherent model is presented to estimate the most probable track of geographic positions directly from a series of light measurements. The model estimates two geographic positions per day, without reducing the daily light data to two threshold crossing times, its covariance structure is designed to handle high correlations due to for instance local weather conditions, and it can estimate the yearly pattern in latitudinal precision by propagating the data uncertainties through the geolocation process. The model is applied to one mooring study, one GPS drifter buoy study, and numerous simulated cases. The simulations are performed with realistic assumptions about the relationship between solar altitude and light and with realistic uncertainty parameters (all taken from real data). The simulations showed that all model parameters were identifiable, and that all tracks could be reconstructed within 1 ◦ or 2 ◦ latitude and 0.5 ◦ or 1 ◦ longitude. The mooring and drifter buoy data showed that the tracks could be reliably estimated, even in cases where the other methods had completely failed. Resume : Nous presentons un modele coherent pour estimer directement le trace le plus probable des positions geographiques a partir d'une series de mesures de lumiere. Le modele estime deux positions geographiques par jour, sans reduire les donnees de lumiere journalieres a deux periodes de traversee du seuil; il possede une structure de covariance concue pour tenir compte des fortes correlations dues, par exemple, aux conditions climatiques locales; il peut aussi estimer le patron annuel de precision des latitudes en faisant passer les incertitudes des donnees dans le processus de geopositionnement. Nous utilisons le modele sur une etude a bouee fixe, une etude a bouee derivante munie d'un GPS et plusieurs cas de simulation. Les simulations comportent des presuppositions realistes concernant la relation entre l'altitude du soleil et la lumiere, ainsi que des parametres d'incertitude realistes (tous tires de donnees reelles). Les simulations montrent que tous les parametres du modele sont identifiables et que tous les traces peuvent etre reconstitues avec une precision de 1 ◦ ou 2 ◦ latitude et de 0,5 ◦ ou 1 ◦ longitude. Les donnees obtenues des bouees fixes et derivantes montrent qu'il est possible d'estimer les traces de facon fiable, meme dans les cas ou les autres methodes ont ete completement incapables de le faire. (Traduit par la Redaction)

[1]  Tim Sippel,et al.  Near real time satellite tracking of striped marlin (Kajikia audax) movements in the Pacific Ocean , 2009 .

[2]  Jean H. Meeus,et al.  Astronomical Algorithms , 1991 .

[3]  G. Arnold,et al.  Electronic Tags in Marine Fisheries Research: A 30-Year Perspective , 2001 .

[4]  David W. Welch,et al.  An assessment of light-based geoposition estimates from archival tags , 1999 .

[5]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .

[6]  Andrew B. Cooper,et al.  Movements of bluefin tuna (Thunnus thynnus) in the northwestern Atlantic Ocean recorded by pop-up satellite archival tags , 2005 .

[7]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter. , 1991 .

[8]  Richard W. Brill,et al.  Horizontal movements of bigeye tuna (Thunnus obesus) near Hawaii determined by Kalman filter analysis of archival tagging data , 2003 .

[9]  A. Klimley,et al.  Broad-band versus narrow-band irradiance for estimating latitude by archival tags , 2007 .

[10]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[11]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[12]  Philip A. Ekstrom,et al.  An advance in geolocation by light , 2004 .

[13]  Mark G. Meekan,et al.  Movements of whale sharks (Rhincodon typus) tagged at Ningaloo Reef, Western Australia , 2006 .

[14]  Anders Nielsen,et al.  Improving light-based geolocation by including sea surface temperature , 2006 .

[15]  Richard W. Brill,et al.  Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data , 2003 .

[16]  Kevin C. Weng,et al.  Validation of geolocation estimates based on light level and sea surface temperature from electronic tags , 2004 .

[17]  David W. Welch,et al.  Ability of Archival Tags to Provide Estimates of Geographical Position Based on Light Intensity , 2001 .

[18]  B. Block Physiological Ecology in the 21st Century: Advancements in Biologging Science1 , 2005, Integrative and comparative biology.

[19]  荒木 望 Unscented Kalman Filterの計測への応用に関する研究 , 2007 .