Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws

In this paper we present a new family of efficient high order accurate direct Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-MOOD finite volume schemes for the solution of nonlinear hyperbolic systems of conservation laws for moving unstructured triangular and tetrahedral meshes. This family is the next generation of the ALE ADER-WENO schemes presented in 16,20]. Here, we use again an element-local space-time Galerkin finite element predictor method to achieve a high order accurate one-step time discretization, while the somewhat expensive WENO approach on moving meshes, used to obtain high order of accuracy in space, is replaced by an a posteriori MOOD loop which is shown to be less expensive but still as accurate. This a posteriori MOOD loop ensures the numerical solution in each cell at any discrete time level to fulfill a set of user-defined detection criteria. If a cell average does not satisfy the detection criteria, then the solution is locally re-computed by progressively decrementing the order of the polynomial reconstruction, following a so-called cascade of predefined schemes with decreasing approximation order. A so-called parachute scheme, typically a very robust first order Godunov-type finite volume method, is employed as a last resort for highly problematic cells. The cascade of schemes defines how the decrementing process is carried out, i.e. how many schemes are tried and which orders are adopted for the polynomial reconstructions. The cascade and the parachute scheme are choices of the user or the code developer. Consequently the iterative MOOD loop allows the numerical solution to maintain some interesting properties such as positivity, mesh validity, etc., which are otherwise difficult to ensure. We have applied our new high order unstructured direct ALE ADER-MOOD schemes to the multi-dimensional Euler equations of compressible gas dynamics. A large set of test problems has been simulated and analyzed to assess the validity of our approach in terms of both accuracy and efficiency (CPU time and memory consumption).

[1]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[2]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[3]  J. S. Peery,et al.  Multi-Material ALE methods in unstructured grids , 2000 .

[4]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[5]  Jérôme Breil,et al.  Hybrid remap for multi-material ALE , 2011 .

[6]  Pavel Váchal,et al.  Synchronized flux corrected remapping for ALE methods , 2011 .

[7]  Tzanio V. Kolev,et al.  High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..

[8]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[9]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[10]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[11]  Pierre-Henri Maire,et al.  Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..

[12]  Michael Dumbser,et al.  On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws , 2012, 1207.6407.

[13]  Bruno Després,et al.  A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes , 2012, J. Comput. Phys..

[14]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .

[15]  Miloslav Feistauer,et al.  Numerical simulation of interaction between turbulent flow and a vibrating airfoil , 2009 .

[16]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[17]  C. L. Rousculp,et al.  A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry , 2000 .

[18]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[19]  Michael Dumbser,et al.  Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.

[20]  Michael Dumbser,et al.  High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics , 2013, 1310.7256.

[21]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .

[22]  Jérôme Breil,et al.  A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction , 2010, J. Comput. Phys..

[23]  Richard Saurel,et al.  Modelling wave dynamics of compressible elastic materials , 2008, J. Comput. Phys..

[24]  Pavel B. Bochev,et al.  Fast optimization-based conservative remap of scalar fields through aggregate mass transfer , 2013, J. Comput. Phys..

[25]  Stéphane Clain,et al.  A Sixth-Order Finite Volumemethod for the 1D Biharmonic Operator , 2015 .

[26]  Miloslav Feistauer,et al.  Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom , 2011 .

[27]  Raphaël Loubère,et al.  "Curl-q": A vorticity damping artificial viscosity for essentially irrotational Lagrangian hydrodynamics calculations , 2006, J. Comput. Phys..

[28]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[29]  Mikhail Shashkov,et al.  Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes , 2013 .

[30]  Raphaël Loubère,et al.  3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .

[31]  Pierre-Henri Maire,et al.  A unified sub‐cell force‐based discretization for cell‐centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[32]  P. Londrillo,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .

[33]  Jérôme Breil,et al.  A second‐order cell‐centered Lagrangian scheme for two‐dimensional compressible flow problems , 2008 .

[34]  Tzanio V. Kolev,et al.  High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics , 2013 .

[35]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[36]  Chi-Wang Shu,et al.  High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations , 2009, J. Comput. Phys..

[37]  Pekka Janhunen,et al.  HLLC solver for ideal relativistic MHD , 2007, J. Comput. Phys..

[38]  Raphaël Loubère,et al.  ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..

[39]  R. Kidder,et al.  Laser-driven compression of hollow shells: power requirements and stability limitations , 1976 .

[40]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[41]  Michael Dumbser,et al.  An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes , 2016, J. Sci. Comput..

[42]  Jérôme Breil,et al.  Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..

[43]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[44]  Dinshaw S. Balsara Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..

[45]  Christophe Berthon,et al.  An entropy preserving MOOD scheme for the Euler equations , 2013 .

[46]  Stéphane Clain,et al.  Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials , 2012 .

[47]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[48]  M. Dumbser,et al.  High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.

[49]  INFN,et al.  The exact solution of the Riemann problem in relativistic magnetohydrodynamics , 2005, Journal of Fluid Mechanics.

[50]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[51]  Dinshaw S. Balsara A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..

[52]  Rémi Abgrall,et al.  A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids , 2014, J. Comput. Phys..

[53]  François Vilar,et al.  Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics , 2012 .

[54]  Philippe Hoch,et al.  An Arbitrary Lagrangian-Eulerian strategy to solve compressible fluid flows , 2009 .

[55]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[56]  Guglielmo Scovazzi,et al.  A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements , 2011, J. Comput. Phys..

[57]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[58]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[59]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[60]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[61]  Jérôme Breil,et al.  A multi-material ReALE method with MOF interface reconstruction , 2013 .

[62]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[63]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[64]  Stéphane Clain,et al.  The MOOD method in the three-dimensional case: Very-High-Order Finite Volume Method for Hyperbolic Systems. , 2012 .

[65]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[66]  Michael Dumbser,et al.  Multidimensional Riemann problem with self-similar internal structure. Part II - Application to hyperbolic conservation laws on unstructured meshes , 2015, J. Comput. Phys..

[67]  David J. Benson,et al.  Momentum advection on a staggered mesh , 1992 .

[68]  Armin Iske,et al.  ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .

[69]  William J. Rider,et al.  Revisiting Wall Heating , 2000 .

[70]  Pierre-Henri Maire,et al.  A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[71]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[72]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[73]  B R U N O G I A C O M A Z Z O,et al.  Under consideration for publication in J. Fluid Mech. 1 The Exact Solution of the Riemann Problem in Relativistic MHD , 2008 .

[74]  Veselin Dobrev,et al.  Curvilinear finite elements for Lagrangian hydrodynamics , 2011 .

[75]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[76]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[77]  Michael Dumbser,et al.  High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes , 2014, J. Comput. Phys..

[78]  S. K. Godunov,et al.  Nonstationary equations of nonlinear elasticity theory in eulerian coordinates , 1972 .

[79]  Raphaël Loubère,et al.  A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver , 2010, ICCS.

[80]  Bruno Després,et al.  Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers , 2003 .

[81]  Vivien Desveaux,et al.  Contribution à l'approximation numérique des systèmes hyperboliques , 2013 .

[82]  Miloslav Feistauer,et al.  The ALE Discontinuous Galerkin Method for the Simulatio of Air Flow Through Pulsating Human Vocal Folds , 2010 .

[83]  William J. Rider,et al.  Multi-material pressure relaxation methods for Lagrangian hydrodynamics , 2013 .

[84]  Eleuterio F. Toro,et al.  MUSTA‐type upwind fluxes for non‐linear elasticity , 2008 .

[85]  Stéphane Clain,et al.  Multi-dimensional Optimal Order Detection (MOOD) — a Very High-Order Finite Volume Scheme for Conservation Laws on Unstructured Meshes , 2011 .

[86]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[87]  R. Smith,et al.  AUSM(ALE) , 1999 .

[88]  Stéphane Clain,et al.  The Multidimensional Optimal Order Detection method in the three‐dimensional case: very high‐order finite volume method for hyperbolic systems , 2013 .

[89]  Rémi Abgrall,et al.  Multidimensional HLLC Riemann solver for unstructured meshes - With application to Euler and MHD flows , 2014, J. Comput. Phys..

[90]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[91]  Rémi Abgrall,et al.  Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics , 2011 .

[92]  Guglielmo Scovazzi,et al.  Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach , 2012, J. Comput. Phys..

[93]  Claus-Dieter Munz,et al.  On Godunov-type schemes for Lagrangian gas dynamics , 1994 .

[94]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[95]  Xijun Yu,et al.  The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions , 2014 .

[96]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[97]  Phillip Colella,et al.  A limiter for PPM that preserves accuracy at smooth extrema , 2008, J. Comput. Phys..

[98]  S. K. Trehan,et al.  Plasma oscillations (I) , 1960 .

[99]  Mikhail J. Shashkov,et al.  One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods , 2012, J. Comput. Phys..

[100]  Jaromír Horácek,et al.  Simulation of compressible viscous flow in time-dependent domains , 2013, Appl. Math. Comput..

[101]  Michael Dumbser,et al.  A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D , 2014, J. Comput. Phys..

[102]  Mikhail Shashkov,et al.  A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation , 2013 .

[103]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[104]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[105]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[106]  Richard Saurel,et al.  A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation , 2001, Journal of Fluid Mechanics.

[107]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[108]  Michael Dumbser,et al.  ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..

[109]  Raphaël Loubère,et al.  Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme , 2011 .

[110]  Mikhail Shashkov,et al.  A finite volume cell‐centered Lagrangian hydrodynamics approach for solids in general unstructured grids , 2013 .

[111]  L. Rezzolla,et al.  An improved exact Riemann solver for relativistic hydrodynamics , 2001, Journal of Fluid Mechanics.

[112]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[113]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[114]  Dinshaw S. Balsara,et al.  Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..

[115]  João M. Nóbrega,et al.  A sixth-order finite volume method for multidomain convection–diffusion problem with discontinuous coefficients , 2013 .

[116]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[117]  勉 斎藤,et al.  D. Vandenberg : Being and Education, An Essay in Existential Phenomenology.(Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1971) , 1974 .

[118]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[119]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[120]  Stéphane Clain,et al.  A very high-order finite volume method for the time-dependent convection-diffusion problem with Butcher Tableau extension , 2014, Comput. Math. Appl..

[121]  Michael Dumbser,et al.  A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws , 2014 .

[122]  Michael Dumbser,et al.  Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers , 2013, J. Comput. Phys..

[123]  Raphaël Loubère,et al.  A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods , 2005 .

[124]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[125]  Michael Dumbser,et al.  Arbitrary-Lagrangian–Eulerian ADER–WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws , 2014, 1402.6897.

[126]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[127]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .