Generating random fields with a truncated power-law variogram: A comparison of several numerical methods

In this study we describe and compare four numerical methods for the generation of random fields with a truncated power-law variogram; the Fourier method, the Randomization method, the Hybrid method as well as the Fourier-Wavelet method. We evaluate these methods with respect to their ability to represent the variogram function over a number of spatial scales as well as the Gaussianity of the generated fields. We furthermore compare these methods with respect to computational costs and investigate structural features.Results show that the Randomization method performs well if only a few number of spatial scales (4-6 orders of magnitude) need to be represented. Due to its simpler implementation it can be preferred over the Fourier-Wavelet method. For a larger interval of spatial scales (9-12 orders of magnitude) however, the Randomization method fails to represent the variogram. Under such circumstances the Hybrid method or the Fourier-Wavelet method should be used.The Matlab code, used for the simulations can be accessed on our institution website at http://www.ufz.de/index.php?en=32179. We investigate the generation of random fields with a truncated power-law variogram.Several methods are compared with respect to different criteria.The variogram function is reproduced over several spatial scales by the Hybrid method and the Fourier-Wavelet method.The reproduction of the variogram function strongly depends on its heavy tailing.The scale-invariance for structural properties in the fractal regime is achieved best by the Hybrid method.

[1]  A. Caspi,et al.  Enhanced diffusion in active intracellular transport. , 2000, Physical review letters.

[2]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[3]  D. McLaughlin,et al.  An efficient multivariate random field generator using the fast Fourier transform , 1998 .

[4]  Adel K. Ibrahim,et al.  Contiguous relations and their computations for 2F1 hypergeometric series , 2008, Comput. Math. Appl..

[5]  C. R. Dietrich,et al.  A fast and exact method for multidimensional gaussian stochastic simulations , 1993 .

[6]  S. P. Neuman,et al.  Generalized scaling of permeabilities: Validation and effect of support scale , 1994 .

[7]  M. Dentz,et al.  Modeling non‐Fickian transport in geological formations as a continuous time random walk , 2006 .

[8]  Alberto Guadagnini,et al.  Extended power-law scaling of air permeabilities measured on a block of tuff , 2011 .

[9]  Peter K. Kitanidis,et al.  Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach: 1. Method , 1992 .

[10]  F. Molz,et al.  An interpretation of potential scale dependence of the effective matrix diffusion coefficient. , 2007, Journal of contaminant hydrology.

[11]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[12]  A. Majda,et al.  SIMPLIFIED MODELS FOR TURBULENT DIFFUSION : THEORY, NUMERICAL MODELLING, AND PHYSICAL PHENOMENA , 1999 .

[13]  Jan M. Nordbotten,et al.  Adaptive Variational Multiscale Methods for Multiphase Flow in Porous Media , 2009, Multiscale Model. Simul..

[14]  Alex B. McBratney,et al.  Applications of Fractals to Soil Studies , 1997 .

[15]  G. Franceschetti,et al.  Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes , 1999 .

[16]  Fred J. Molz,et al.  Discrimination of Fractional Brownian Movement and Fractional Gaussian Noise Structures in Permeability and Related Property Distributions With Range Analyses , 1996 .

[17]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[18]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[19]  F. Stillinger,et al.  A superior descriptor of random textures and its predictive capacity , 2009, Proceedings of the National Academy of Sciences.

[20]  Alberto Guadagnini,et al.  Anisotropic statistical scaling of soil and sediment texture in a stratified deep vadose zone near Maricopa, Arizona , 2014 .

[21]  H. Vogel,et al.  On the reconstruction of structural and functional properties in random heterogeneous media , 2011 .

[22]  Alberto Guadagnini,et al.  Sub-Gaussian model of processes with heavy-tailed distributions applied to air permeabilities of fractured tuff , 2012, Stochastic Environmental Research and Risk Assessment.

[23]  Hans-Jörg Vogel,et al.  Quantification of soil structure based on Minkowski functions , 2010, Comput. Geosci..

[24]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[25]  Vittorio Di Federico,et al.  Scaling of random fields by means of truncated power variograms and associated spectra , 1997 .

[26]  Yoram Rubin,et al.  HYDRO_GEN: A spatially distributed random field generator for correlated properties , 1996 .

[27]  Jacques Istas,et al.  Fractional Fields and Applications , 2013 .

[28]  J. Coeurjolly,et al.  Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study , 2000 .

[29]  S. Torquato,et al.  Chord-distribution functions of three-dimensional random media: approximate first-passage times of Gaussian processes. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  John H. Cushman,et al.  On generating conductivity fields with known fractal dimension and nonstationary increments , 2012 .

[31]  Klaus Mecke,et al.  Utilizing Minkowski functionals for image analysis: a marching square algorithm , 2008 .

[32]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[33]  Fred J. Molz,et al.  Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions , 1997 .

[34]  Sophie Lambert-Lacroix,et al.  On Fractional Gaussian Random Fields Simulations , 2007 .

[35]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[36]  E. Eric Adams,et al.  Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description , 1992 .

[37]  Nico M. Temme,et al.  The ABC of hyper recursions , 2004 .

[38]  Daniel M. Tartakovsky,et al.  Perspective on theories of non-Fickian transport in heterogeneous media , 2009 .

[39]  Andrew T. A. Wood,et al.  Laplace approximations for hypergeometric functions with matrix argument , 2002 .

[40]  Dirk P. Kroese,et al.  Spatial Process Generation , 2013, 1308.0399.

[41]  Fred J. Molz,et al.  Further evidence of fractal structure in hydraulic conductivity distributions , 1995 .

[42]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[43]  Dirk Schulze-Makuch,et al.  Scale Dependency of Hydraulic Conductivity in Heterogeneous Media , 1999 .

[44]  M. Raghavachari,et al.  Turbulence and Stochastic Processes: Kobnogorov's Ideas 50 Years On , 1993 .

[45]  S. P. Neuman,et al.  Trends, prospects and challenges in quantifying flow and transport through fractured rocks , 2005 .

[46]  Andrew J. Majda,et al.  A Fourier-Wavelet Monte Carlo Method for Fractal Random Fields , 1997 .

[47]  Guanhua Huang,et al.  Evidence of one-dimensional scale-dependent fractional advection-dispersion. , 2006, Journal of contaminant hydrology.

[48]  Salvatore Torquato,et al.  Two‐point cluster function for continuum percolation , 1988 .

[49]  C.A.J. Appelo,et al.  FLOW AND TRANSPORT , 2004 .

[50]  A. Caspi,et al.  Diffusion and directed motion in cellular transport. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Andrew J. Majda,et al.  A new algorithm with plane waves and wavelets for random velocity fields with many spatial scales , 1995 .

[52]  G. Marsaglia,et al.  The Ziggurat Method for Generating Random Variables , 2000 .

[53]  Peter R. Kramer,et al.  Comparative analysis of multiscale Gaussian random field simulation algorithms , 2007, J. Comput. Phys..

[54]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[55]  Shaun Lovejoy,et al.  Nonlinear Processes in Geophysics Scaling and multifractal fields in the solid earth and topography , 2008 .

[56]  Harihar Rajaram,et al.  Stochastic fractal‐based models of heterogeneity in subsurface hydrology: Origins, applications, limitations, and future research questions , 2004 .

[57]  Renaud Marty,et al.  A general framework for waves in random media with long-range correlations. , 2011 .

[58]  Nicole Bauer Advances In Hydrogeology , 2016 .

[59]  Denis Allard On the Connectivity of Two Random Set Models: The Truncated Gaussian and the Boolean , 1993 .

[60]  Kristopher L. Kuhlman,et al.  Advances in Hydrogeology , 2013 .

[61]  Jesús Carrera,et al.  Scale effects in transmissivity , 1996 .

[62]  Charles F. Harvey,et al.  When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields , 2003 .

[63]  Rajagopal Raghavan,et al.  Some observations on the scale dependence of permeability by pumping tests , 2006 .

[64]  Kuo-Chin Hsu,et al.  Multiscale flow and transport model in three-dimensional fractal porous media , 2010 .

[65]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[66]  Y. He,et al.  Analysis of the anisotropic spatial variability and three-dimensional computer simulation of agricultural soil bulk density in an alluvial plain of north China , 2010, Math. Comput. Model..

[67]  Daniel M. Tartakovsky,et al.  Theoretical interpretation of a pronounced permeability scale effect in unsaturated fractured tuff , 2002 .

[68]  Walter Gautschi,et al.  Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions , 2002 .

[69]  Dietrich Stoyan,et al.  Statistical Physics and Spatial Statistics: The Art Of Analyzing And Modeling Spatial Structures And Pattern Formation , 2010 .

[70]  S. Whitaker The method of volume averaging , 1998 .

[71]  Ruben Juanes,et al.  Special issue on multiscale methods for flow and transport in heterogeneous porous media , 2008 .

[72]  U. Hornung Homogenization and porous media , 1996 .

[73]  Rina Schumer,et al.  Fractional advection‐dispersion equations for modeling transport at the Earth surface , 2009 .

[74]  M. Sahimi,et al.  Self-affine fractal distributions of the bulk density, elastic moduli, and seismic wave velocities of rock. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  Sabine Attinger,et al.  Temporal behavior of a solute cloud in a heterogeneous porous medium 3. Numerical simulations , 2002 .

[76]  Chris Cameron Relative efficiency of Gaussian stochastic process sampling procedures , 2003 .

[77]  Wolfgang Nowak,et al.  Dispersion on kriged hydraulic conductivity fields , 2003 .

[78]  Xavier Emery,et al.  Testing the correctness of the sequential algorithm for simulating Gaussian random fields , 2004 .

[79]  D. Benson,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[80]  Vittorio Di Federico,et al.  Multifaceted nature of hydrogeologic scaling and its interpretation , 2003 .

[81]  S. P. Neuman,et al.  On Advective Transport in Fractal Permeability and velocity Fields , 1995 .

[82]  R. Grayson,et al.  Toward capturing hydrologically significant connectivity in spatial patterns , 2001 .

[83]  Alberto Guadagnini,et al.  On the geostatistical characterization of hierarchical media , 2008 .

[84]  Walter J. Rawls,et al.  Fractal models for predicting soil hydraulic properties: a review , 1997 .

[85]  Alberto Guadagnini,et al.  Extended power-law scaling of heavy-tailed random air-permeability fields in fractured and sedimentary rocks , 2012 .

[86]  Paul W. Reimus,et al.  Upscaling matrix diffusion coefficients for heterogeneous fractured rocks , 2007 .

[87]  Michael F. Shlesinger,et al.  Strange kinetics , 1993, Nature.

[88]  Y. Rubin,et al.  Spatial correlation of permeability in cross‐stratified sediment with hierarchical architecture , 2004 .

[89]  J. Pearson Computation of Hypergeometric Functions , 2009 .

[90]  Quanlin Zhou,et al.  Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey. , 2007, Journal of contaminant hydrology.

[91]  B. Berkowitz Characterizing flow and transport in fractured geological media: A review , 2002 .

[92]  G. Dagan Flow and transport in porous formations , 1989 .

[93]  Y. Rubin Applied Stochastic Hydrogeology , 2003 .

[94]  Philippe Renard,et al.  Connectivity metrics for subsurface flow and transport , 2013 .

[95]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[96]  S. P. Neuman Universal scaling of hydraulic conductivities and dispersivities in geologic media , 1990 .

[97]  Shunji Ouchi,et al.  Measurement of self-affinity on surfaces as a trial application of fractal geometry to landform analysis , 1992 .