Two Approximate Minkowski Sum Algorithms
暂无分享,去创建一个
[1] Steven Fortune. Vertex-Rounding a Three-Dimensional Polyhedral Subdivision , 1999, Discret. Comput. Geom..
[2] Ron Wein. Exact and Efficient Construction of Planar Minkowski Sums Using the Convolution Method , 2006, ESA.
[3] V. Milenkovic,et al. Translational polygon containment and minimal enclosure using mathematical programming , 1999 .
[4] Victor J. Milenkovic,et al. An Approximate Arrangement Algorithm for Semi-Algebraic Curves , 2007, Int. J. Comput. Geom. Appl..
[5] Eli Packer,et al. Iterated snap rounding , 2002, Comput. Geom..
[6] Jean-Daniel Boissonnat,et al. Simultaneous containment of several polygons , 1987, SCG '87.
[7] Victor J. Milenkovic,et al. A Monotonic Convolution for Minkowski Sums , 2007, Int. J. Comput. Geom. Appl..
[8] Leonidas J. Guibas,et al. Snap rounding line segments efficiently in two and three dimensions , 1997, SCG '97.
[9] Michael Kerber,et al. Exact and efficient 2D-arrangements of arbitrary algebraic curves , 2008, SODA '08.
[10] T. J. Dekker,et al. A floating-point technique for extending the available precision , 1971 .
[11] Steven Fortune,et al. Polyhedral modelling with multiprecision integer arithmetic , 1997, Comput. Aided Des..
[12] Victor J. Milenkovic,et al. Rotational polygon containment and minimum enclosure using only robust 2D constructions , 1999, Comput. Geom..
[13] Leo Joskowicz,et al. Computer-aided mechanical design using configuration spaces , 1999, Comput. Sci. Eng..
[14] Leonidas J. Guibas,et al. A kinetic framework for computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[15] John Hershberger,et al. Improved Output-Sensitive Snap Rounding , 2006, SCG '06.
[16] Elisha Sacks,et al. Path planning for planar articulated robots using configuration spaces and compliant motion , 2003, IEEE Trans. Robotics Autom..
[17] J. Milenkovi. Shortest Path Geometric Rounding , 2000 .
[18] Eli Packer. Iterated snap rounding with bounded drift , 2008, Comput. Geom..