2D-3D heterostructure enables scalable coating of efficient low-bandgap Sn–Pb mixed perovskite solar cells

[1]  Inho Kim,et al.  Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells , 2019, Nano Energy.

[2]  C. Brabec,et al.  Sequential Deposition of High‐Quality Photovoltaic Perovskite Layers via Scalable Printing Methods , 2019, Advanced Functional Materials.

[3]  David Cahen,et al.  Halide Perovskites: Is It All about the Interfaces? , 2018, Chemical reviews.

[4]  T. Noda,et al.  Coadditive Engineering with 5-Ammonium Valeric Acid Iodide for Efficient and Stable Sn Perovskite Solar Cells , 2019, ACS Energy Letters.

[5]  Jun Li,et al.  Highly Efficient Sn/Pb Binary Perovskite Solar Cell via Precursor Engineering: A Two‐Step Fabrication Process , 2018, Advanced Functional Materials.

[6]  Yong Chen,et al.  Composition and Interface Engineering for Efficient and Thermally Stable Pb–Sn Mixed Low‐Bandgap Perovskite Solar Cells , 2018, Advanced Functional Materials.

[7]  S. Cheung,et al.  High performance low-bandgap perovskite solar cells based on a high-quality mixed Sn–Pb perovskite film prepared by vacuum-assisted thermal annealing , 2018 .

[8]  Tomas Leijtens,et al.  Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors , 2018, Nature Energy.

[9]  R. Munir,et al.  Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells , 2018, Joule.

[10]  Steve Albrecht,et al.  How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures , 2018, Chemistry of Materials.

[11]  Germà Garcia-Belmonte,et al.  Selective growth of layered perovskites for stable and efficient photovoltaics , 2018 .

[12]  Peng Chen,et al.  In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells , 2018 .

[13]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[14]  R. Munir,et al.  Blade-Coated Hybrid Perovskite Solar Cells with Efficiency > 17%: An In Situ Investigation , 2018 .

[15]  M. Kanatzidis,et al.  Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesden–Popper Perovskites for High‐Efficiency Solar Cells , 2018 .

[16]  Xiaodang Zhang,et al.  Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells , 2017 .

[17]  Jinsong Hu,et al.  Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes , 2017 .

[18]  E. Diau,et al.  Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells. , 2017, Angewandte Chemie.

[19]  T. Noda,et al.  Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering , 2017, Advanced materials.

[20]  Tejas S. Sherkar,et al.  Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions , 2017, ACS energy letters.

[21]  Shiyu Huang,et al.  Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20% , 2017 .

[22]  C. Ballif,et al.  Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells , 2017 .

[23]  Jiansheng Jie,et al.  Metal Acetylacetonate Series in Interface Engineering for Full Low‐Temperature‐Processed, High‐Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm2 Scale , 2017, Advanced materials.

[24]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[25]  A. Jen,et al.  Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution , 2016 .

[26]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[27]  Kai Zhu,et al.  Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. , 2016, Journal of the American Chemical Society.

[28]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[29]  Liyuan Han,et al.  Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells , 2016 .

[30]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[31]  Seong Sik Shin,et al.  Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF₂-Pyrazine Complex. , 2016, Journal of the American Chemical Society.

[32]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[33]  Wei Lin Leong,et al.  Formamidinium tin-based perovskite with low Eg for photovoltaic applications , 2015 .

[34]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[35]  K. Wong,et al.  Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. , 2015, ACS nano.

[36]  Fan Zuo,et al.  Binary‐Metal Perovskites Toward High‐Performance Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[37]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[38]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[39]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[40]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[41]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[42]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.

[43]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[44]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .