Analysis of a mixed finite element method for the quad-curl problem

Quad-curl term plays an essential role in the numerical analysis of the resistive magnetohydrodynamics (MHD) and the forth order inverse electromagnetic scattering problem. It is desirable to develop simple and efficient numerical methods for the quad-curl problem. In this paper, we firstly give a regularity result for the quad-curl problem on Lipschitz polyhedron domains, which is {\em new} in literatures. Then, we propose a mixed finite element method for the quad-curl problem. With {\em novel} discrete Sobolev embedding inequalities for the piecewise polynomials, we obtain stability results and derive {\em optimal} error estimates relying on a low regularity assumption of the exact solution. To the best of our knowledge, this low regularity assumption is {\em lower} than the regularity requirements in existing works.

[1]  Buyang Li,et al.  A convergent linearized Lagrange finite element method for the magneto-hydrodynamic equations in 2D nonsmooth and nonconvex domains. , 2019, 1902.04276.

[2]  Alberto Valli,et al.  An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations , 1999, Math. Comput..

[3]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[4]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[5]  Susanne C. Brenner,et al.  Hodge Decomposition Methods for a Quad-Curl Problem on Planar Domains , 2017, J. Sci. Comput..

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[8]  Weifeng Qiu,et al.  A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations , 2018 .

[9]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[10]  Jinchao Xu,et al.  Magnetic-Electric Formulations for Stationary Magnetohydrodynamics Models , 2017, 1711.11330.

[11]  Jiguang Sun A mixed FEM for the quad-curl eigenvalue problem , 2016, Numerische Mathematik.

[12]  Jean-Luc Guermond,et al.  An interior penalty Galerkin method for the MHD equations in heterogeneous domains , 2007, J. Comput. Phys..

[13]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[14]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[15]  D. Schötzau,et al.  A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics , 2010 .

[16]  Thirupathi Gudi,et al.  An interior penalty method for a sixth-order elliptic equation , 2011 .

[17]  W. Habashi,et al.  A finite element method for magnetohydrodynamics , 2001 .

[18]  Jinchao Xu,et al.  A DISCONTINUOUS GALERKIN METHOD FOR THE FOURTH-ORDER CURL PROBLEM * , 2012 .

[19]  Jinchao Xu,et al.  A nonconforming finite element method for fourth order curl equations in R3 , 2010, Math. Comput..

[20]  J. Douglas,et al.  A family of $C^1$ finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems , 1979 .

[21]  Jinchao Xu,et al.  Stable finite element methods preserving ∇·B=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \cdot \varvec{B}= , 2014, Numerische Mathematik.

[22]  Jiguang Sun,et al.  Finite Element Methods for Maxwell's Transmission Eigenvalues , 2012, SIAM J. Sci. Comput..

[23]  Shuo Zhang Regular decomposition and a framework of order reduced methods for fourth order problems , 2018, Numerische Mathematik.

[24]  Huadong Gao,et al.  A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations , 2018, Computer Methods in Applied Mechanics and Engineering.

[25]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[26]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[27]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[28]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[29]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[30]  Serge Nicaise Singularities of the quad curl problem , 2018 .

[31]  Zhimin Zhang,et al.  An $H^2$(curl)-conforming finite element in 2D and its applications to the quad-curl problem , 2018, 1805.02962.

[32]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[33]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[34]  Weifeng Qiu,et al.  A mixed DG method and an HDG method for incompressible magnetohydrodynamics , 2017, IMA Journal of Numerical Analysis.

[35]  Shuo Zhang Mixed schemes for quad-curl equations , 2018 .