Simultaneous data reconciliation and gross error detection for dynamic systems using particle filter and measurement test

Abstract Good dynamic model estimation plays an important role for both feedforward and feedback control, fault detection, and system optimization. Attempts to successfully implement model estimators are often hindered by severe process nonlinearities, complicated state constraints, systematic modeling errors, unmeasurable perturbations, and irregular measurements with possibly abnormal behaviors. Thus, simultaneous data reconciliation and gross error detection (DRGED) for dynamic systems are fundamental and important. In this research, a novel particle filter (PF) algorithm based on the measurement test (MT) is used to solve the dynamic DRGED problem, called PFMT-DRGED. This strategy can effectively solve the DRGED problem through measurements that contain gross errors in the nonlinear dynamic process systems. The performance of PFMT-DRGED is demonstrated through the results of two statistical performance indices in a classical nonlinear dynamic system. The effectiveness of the proposed PFMT-DRGED applied to a nonlinear dynamic system and a large scale polymerization process is illustrated.

[1]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[2]  Ajit C. Tamhane,et al.  Performance studies of the measurement test for detection of gross errors in process data , 1985 .

[3]  Petar M. Djuric,et al.  A Particle Filtering Scheme for Processing Time Series Corrupted by Outliers , 2012, IEEE Transactions on Signal Processing.

[4]  Paulo Afonso,et al.  Unscented Kalman Filtering of a Simulated pH System , 2004 .

[5]  Victor M. Becerra,et al.  Combined bias and outlier identification in dynamic data reconciliation , 2002 .

[6]  Biao Huang,et al.  Practical issues in particle filters for state estimation of complex chemical processes , 2009 .

[7]  B. Bakshi,et al.  Bayesian estimation via sequential Monte Carlo sampling: Unconstrained nonlinear dynamic systems , 2004 .

[8]  Andrei Romanenko,et al.  The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study , 2004, Comput. Chem. Eng..

[9]  L. Biegler,et al.  Redescending estimators for data reconciliation and parameter estimation , 2001 .

[10]  Biao Huang,et al.  Estimation of Instrument Variance and Bias Using Bayesian Methods , 2011 .

[11]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[12]  Richard S. H. Mah,et al.  Reconcillation and Rectification of Process Flow and Inventory Data , 1976 .

[13]  Branko Ristic,et al.  Bernoulli Particle/Box-Particle Filters for Detection and Tracking in the Presence of Triple Measurement Uncertainty , 2012, IEEE Transactions on Signal Processing.

[14]  Tao Chen,et al.  Dynamic data rectification using particle filters , 2008, Comput. Chem. Eng..

[15]  Jay H. Lee,et al.  A moving horizon‐based approach for least‐squares estimation , 1996 .

[16]  Richard S.H. Mah,et al.  Estimation of flows and temperatures in process networks , 1977 .

[17]  Hongwei Tong,et al.  Detection of gross erros in data reconciliation by principal component analysis , 1995 .

[18]  Dale E. Seborg,et al.  Dynamic data rectification using the expectation maximization algorithm , 2000 .

[19]  Richard S. H. Mah,et al.  Generalized likelihood ratio method for gross error identification , 1987 .

[20]  Xi Chen,et al.  Quasi-weighted least squares estimator for data reconciliation , 2010, Comput. Chem. Eng..

[21]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[22]  Ruben Gonzalez,et al.  Dynamic bayesian approach to gross error detection and compensation with application toward an oil sands process , 2012 .

[23]  Elaine Martin,et al.  Particle filters for state and parameter estimation in batch processes , 2005 .

[24]  L. Biegler,et al.  Constrained particle filter approach to approximate the arrival cost in Moving Horizon Estimation , 2011 .

[25]  Shankar Narasimhan,et al.  Data reconciliation & gross error detection: an intelligent use of process data , 1999 .

[26]  W. Harmon Ray,et al.  The dynamic behavior of continuous polymerization reactors—I: Isothermal solution polymerization in a CSTR , 1981 .

[27]  C. M. Crowe,et al.  Data reconciliation — Progress and challenges , 1996 .

[28]  Andrew P. Sage,et al.  Estimation theory with applications to communications and control , 1979 .

[29]  Juergen Hahn,et al.  Computation of arrival cost for moving horizon estimation via unscented Kalman filtering , 2009 .

[30]  H. Kushner Dynamical equations for optimal nonlinear filtering , 1967 .

[31]  Biao Huang,et al.  Parameter estimation in batch process using EM algorithm with particle filter , 2013, Comput. Chem. Eng..

[32]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[33]  Ajit C. Tamhane,et al.  Detection of gross errors in process data , 1982 .

[34]  R. Kalman,et al.  New results in linear prediction and filtering theory Trans. AMSE , 1961 .

[35]  Ajit C. Tamhane,et al.  Data Reconciliation and Gross Error Detection in Chemical Process Networks , 1985 .

[36]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[37]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[38]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[39]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .