Inorganic and organic anion sensing by azole family members

[1]  A. Kushwaha,et al.  A simple benzimidazole styryl-based colorimetric chemosensor for dual sensing application. , 2019, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[2]  Philip A. Gale,et al.  Anion receptor chemistry: Highlights from 2016 , 2018, Coordination Chemistry Reviews.

[3]  Z. Seferoğlu,et al.  A novel coumarin-pyrazole-triazine based fluorescence chemosensor for fluoride detection via deprotonation process: Experimental and theoretical studies , 2018 .

[4]  Fang Liu,et al.  Synthesis of Bisimidazole Derivatives for Selective Sensing of Fluoride Ion , 2017, Molecules.

[5]  Yavuz Dede,et al.  H-bond stabilization of a tautomeric coumarin-pyrazole-pyridine triad generates a PET driven, reversible and reusable fluorescent chemosensor for anion detection , 2017 .

[6]  Jason J. Davis,et al.  Acyclic halogen and hydrogen bonding diquat-containing receptors for the electrochemical sensing of anions , 2016 .

[7]  E. Monzani,et al.  Chloride-binding in organic-water mixtures: the powerful synergy of C-H donor groups within a bowl-shaped cavity. , 2016, Chemical communications.

[8]  T. Gunnlaugsson,et al.  Formation of Self-Templated 2,6-Bis(1,2,3-triazol-4-yl)pyridine [2]Catenanes by Triazolyl Hydrogen Bonding: Selective Anion Hosts for Phosphate. , 2016, Angewandte Chemie.

[9]  A. Pöthig,et al.  Capsoplexes: encapsulating complexes via guest recognition. , 2016, Chemical communications.

[10]  A. Garg,et al.  Differential sensing of fluoride and cyanide ions by using Dicyano substituted benzimidazole probe , 2016 .

[11]  A. Flood Creating molecular macrocycles for anion recognition , 2016, Beilstein journal of organic chemistry.

[12]  P. Mondal,et al.  Substituent directed selectivity in anion recognition by a new class of simple osmium-pyrazole derived receptors. , 2016, Dalton transactions.

[13]  Muthusamy Poomalai Pachamuthu,et al.  A novel pyrazole biscoumarin based chemosensors for the selective detection of Cu(2+) and Zn(2+) ions. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[14]  Philip A. Gale,et al.  Anion sensing by small molecules and molecular ensembles. , 2015, Chemical Society reviews.

[15]  C. Jandl,et al.  Introducing a pyrazole/imidazole based hybrid cyclophane: a hydrogen bond sensor and binucleating ligand precursor. , 2015, Dalton transactions.

[16]  K. Rissanen,et al.  From isolated 1H-pyrazole cryptand anion receptors to hybrid inorganic-organic 1D helical polymeric anion receptors. , 2015, Dalton transactions.

[17]  Z. Seferoğlu,et al.  A ratiometric fluorescence chemosensor based on a coumarin–pyrazolone hybrid: the synthesis and an investigation of the photophysical, tautomeric and anion binding properties by spectroscopic techniques and DFT calculations , 2015 .

[18]  U. Singh,et al.  Anion directed supramolecular architecture of benzimidazole-based receptor , 2015 .

[19]  K. Tomar,et al.  Supramolecular assemblies of benzene-1,3,5-tricarboxylic acid and 3,5-substituted pyrazoles: formation and structural analysis , 2015 .

[20]  Pierre Kennepohl,et al.  Evidence for Halogen Bond Covalency in Acyclic and Interlocked Halogen-Bonding Receptor Anion Recognition , 2014, Journal of the American Chemical Society.

[21]  Shainaz M. Landge,et al.  A simple and effective 1,2,3-triazole based “turn-on” fluorescence sensor for the detection of anions , 2015 .

[22]  M. Lin,et al.  A dihydrogen phosphate selective anion receptor based on acylhydrazone and pyrazole , 2015 .

[23]  P. Beer,et al.  Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts. , 2014, Nature chemistry.

[24]  Jason Y. C. Lim,et al.  Neutral redox-active hydrogen- and halogen-bonding [2]rotaxanes for the electrochemical sensing of chloride. , 2014, Dalton transactions.

[25]  A. Flood,et al.  Quantifying chloride binding and salt extraction with poly(methyl methacrylate) copolymers bearing aryl-triazoles as anion receptor side chains. , 2014, Chemical communications.

[26]  P. Iyer,et al.  Selective fluoride anion sensing by simple benzimidazolyl based ligand , 2014 .

[27]  U. Singh,et al.  A supramolecular approach towards the construction of molecular salts using phosphonic acid and pyrazole , 2014 .

[28]  P. Molina,et al.  Open bis(triazolium) structural motifs as a benchmark to study combined hydrogen- and halogen-bonding interactions in oxoanion recognition processes. , 2014, The Journal of organic chemistry.

[29]  Yanke Che,et al.  Preorganized aryltriazole foldamers as effective transmembrane transporters for chloride anion. , 2014, Organic letters.

[30]  A. Skwierawska,et al.  Synthesis and application of tetrazole di- and triamide derivatives in ion-selective membrane electrodes , 2014 .

[31]  P. Beer,et al.  Structural Study of Triazole and Amide Containing Anion-Templated Pseudorotaxanes , 2014 .

[32]  Raghunath O. Ramabhadran,et al.  An overlooked yet ubiquitous fluoride congenitor: binding bifluoride in triazolophanes using computer-aided design. , 2014, Journal of the American Chemical Society.

[33]  U. Singh,et al.  Effect of anions on supramolecular architecture of benzimidazole-based ionic salts , 2014, Structural Chemistry.

[34]  R. Noto,et al.  Molecular "pincer" from a diimidazolium salt: a study of binding ability. , 2013, The Journal of organic chemistry.

[35]  B. Dong,et al.  Ion-based materials derived from positively and negatively charged chloride complexes of π-conjugated molecules. , 2013, Journal of the American Chemical Society.

[36]  P. Molina,et al.  Preparation, Structural Characterization, Electrochemistry, and Sensing Properties toward Anions and Cations of Ferrocene-Triazole Derivatives , 2013 .

[37]  Bradley D. Smith,et al.  Squaraine rotaxane shuttle as a ratiometric deep-red optical chloride sensor , 2013 .

[38]  Chakravarthi Simhadri,et al.  Dissecting the complex recognition interfaces of potent tetrazole- and pyrrole-based anion binders. , 2013, The Journal of organic chemistry.

[39]  Young Chun,et al.  Calix[n]imidazolium as a new class of positively charged homo-calix compounds , 2013, Nature Communications.

[40]  Bosung Kim,et al.  Highly selective fluorescence turn-on sensor for fluoride detection. , 2013, ACS applied materials & interfaces.

[41]  A. Skwierawska,et al.  Selective detection of F− by chromogenic tetrazole receptor , 2013 .

[42]  Yuan Fang,et al.  A highly specific tetrazole-based chemosensor for fluoride ion: a new sensing functional group based on intramolecular proton transfer. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[43]  E. Ortí,et al.  A bis(triazole)benzamide receptor for the complexation of halide anions and neutral carboxylic acid guests. Guest-controlled topicity and self-assembly. , 2013, Organic & biomolecular chemistry.

[44]  P. Molina,et al.  Ion pair recognition receptor based on an unsymmetrically 1,1'-disubstituted ferrocene-triazole derivative. , 2012, The Journal of organic chemistry.

[45]  Xiao‐Qi Yu,et al.  BINOL-based fluorescent sensor for recognition of Cu(II) and sulfide anion in water. , 2012, The Journal of organic chemistry.

[46]  Isurika R. Fernando,et al.  Selective total encapsulation of the sulfate anion by neutral nano-jars. , 2012, Chemical communications.

[47]  A. Flood,et al.  Shape persistence delivers lock-and-key chloride binding in triazolophanes. , 2012, Chemical communications.

[48]  S. Chakraborty,et al.  Anion-assisted formation of discrete homodimeric and heterotetrameric assemblies by benzene based protonated heteroaryl receptors , 2012 .

[49]  Ching‐Han Hu,et al.  A fluorescence enhancement-based sensor for hydrogen sulfate ion. , 2012, The Analyst.

[50]  P. Beer,et al.  A ferrocene redox-active triazolium macrocycle that binds and senses chloride , 2012, Beilstein journal of organic chemistry.

[51]  G. Das,et al.  Neutral acyclic anion receptor with thiadiazole spacer: halide binding study and halide-directed self-assembly in the solid state. , 2012, Inorganic chemistry.

[52]  R. Demadrille,et al.  Self-assembly of highly luminescent lanthanide complexes promoted by pyridine-tetrazolate ligands. , 2012, Dalton transactions.

[53]  F. Hof,et al.  Just add tetrazole: 5-(2-pyrrolo)tetrazoles are simple, highly potent anion recognition elements. , 2011, Chemical communications.

[54]  Raghunath O. Ramabhadran,et al.  Polarized naphthalimide CH donors enhance Cl- binding within an aryl-triazole receptor. , 2011, Organic letters.

[55]  W. Jang,et al.  Highly sensitive and selective cyanide detection via Cu2+ complex ligand exchange. , 2011, Chemical communications.

[56]  K. Hanaoka,et al.  Development of a highly selective fluorescence probe for hydrogen sulfide. , 2011, Journal of the American Chemical Society.

[57]  Yu Zhao,et al.  Capture and visualization of hydrogen sulfide by a fluorescent probe. , 2011, Angewandte Chemie.

[58]  S. Chandrasekaran,et al.  10 years of click chemistry: synthesis and applications of ferrocene-derived triazoles. , 2011, Chemistry, an Asian journal.

[59]  M. Kiskin,et al.  New Zn complexes based on 1,2,4-triazoles: Synthesis, structure and luminescence , 2011 .

[60]  Bahareh Shirinfar,et al.  Fluorescent imidazolium-based cyclophane for detection of guanosine-5'-triphosphate and I(-) in aqueous solution of physiological pH. , 2011, Organic letters.

[61]  Sungtae Kim,et al.  Ferrocene-appended aryl triazole for electrochemical recognition of phosphate ions. , 2011, Organic letters.

[62]  P. Pandey,et al.  Hydrogen sulfate-induced organogelation of a bile acid based anion-receptor , 2011 .

[63]  U. Singh,et al.  Anion directed supramolecular architecture of pyrazole based ionic salts , 2011 .

[64]  B. Mishra,et al.  Effect of electron donating substituents on supramolecular structure of salts having phenylphosphonic acid and pyrazoles , 2011 .

[65]  P. Beer,et al.  A bidentate halogen-bonding bromoimidazoliophane receptor for bromide ion recognition in aqueous media. , 2011, Angewandte Chemie.

[66]  V. Lynch,et al.  Environmentally responsive threading, dethreading, and fixation of anion-induced pseudorotaxanes. , 2011, Journal of the American Chemical Society.

[67]  T. Ooi,et al.  Chiral 1,2,3-triazoliums as new cationic organic catalysts with anion-recognition ability: application to asymmetric alkylation of oxindoles. , 2011, Journal of the American Chemical Society.

[68]  Raghunath O. Ramabhadran,et al.  Aromatic and aliphatic CH hydrogen bonds fight for chloride while competing alongside ion pairing within triazolophanes. , 2011, Chemistry.

[69]  Philip A. Gale,et al.  Anion Receptor Chemistry , 2016 .

[70]  B. Trofimov,et al.  A highly selective fluorescent sensor for fluoride anion based on pyrazole derivative: Naked eye no-yes detection , 2011 .

[71]  J. Sessler,et al.  A pyrrolyl-based triazolophane: a macrocyclic receptor with CH and NH donor groups that exhibits a preference for pyrophosphate anions. , 2010, Journal of the American Chemical Society.

[72]  Thorfinnur Gunnlaugsson,et al.  Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. , 2010, Chemical Society reviews.

[73]  Amar H Flood,et al.  Flipping the switch on chloride concentrations with a light-active foldamer. , 2010, Journal of the American Chemical Society.

[74]  Ji Zhang,et al.  Highly selective ratiometric estimation of fluoride ion based on a BINOL imidazolium cyclophane with dual-channel , 2010 .

[75]  Ying Wang,et al.  Controlling binding affinities for anions by a photoswitchable foldamer. , 2010, Organic letters.

[76]  Rajadurai Chandrasekar,et al.  "Click-Fluors": synthesis of a family of pi-conjugated fluorescent back-to-back coupled 2,6-bis(triazol-1-yl)pyridines and their self-assembly studies. , 2010, The Journal of organic chemistry.

[77]  U. Schubert,et al.  Anion complexation by triazolium "ligands": mono- and bis-tridentate complexes of sulfate. , 2010, Organic letters.

[78]  Jonathan L. Sessler,et al.  A 'Texas-sized' molecular box that forms an anion-induced supramolecular necklace. , 2010, Nature chemistry.

[79]  M. Arunachalam,et al.  Nitrate directed organized assemblies of protonated arene based tripodal receptors , 2010 .

[80]  A. Flood,et al.  Intramolecular hydrogen bonds preorganize an aryl-triazole receptor into a crescent for chloride binding. , 2010, Organic letters.

[81]  A. Flood,et al.  Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. , 2010, Chemical Society reviews.

[82]  E. Tiekink,et al.  Anion-Controlled Assembly of Silver(I) Complexes of Multiring Heterocyclic Ligands: A Structural and Photophysical Study , 2010 .

[83]  Changwei Hu,et al.  1,1'-Binaphthyl-based imidazolium chemosensors for highly selective recognition of tryptophan in aqueous solutions. , 2010, Organic & biomolecular chemistry.

[84]  Philip A. Gale,et al.  Bis-cation salt complexation by meso-octamethylcalix[4]pyrrole: linking complexes in solution and in the solid state. , 2010, Organic & biomolecular chemistry.

[85]  Juyoung Yoon,et al.  Sensors for the optical detection of cyanide ion. , 2010, Chemical Society reviews.

[86]  Raju Mondal,et al.  Construction of Extended Molecular Networks with Heterosynthons in Cocrystals of Pyrazole and Acids , 2009 .

[87]  M. Zeller,et al.  In situ tetrazole ligand synthesis leading to a microporous cadmium-organic framework for selective ion sensing. , 2009, Chemical communications.

[88]  P. Molina,et al.  A click-generated triazole tethered ferrocene-pyrene dyad for dual-mode recognition of the pyrophosphate anion. , 2009, Organic letters.

[89]  M. Arunachalam,et al.  Formation of a nitrate zipped dimeric capsule and un-zipping by chloride doping. , 2009, Chemical communications.

[90]  K. Rissanen,et al.  Recognition and sensing of fluoride anion. , 2009, Chemical communications.

[91]  P. Beer,et al.  Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. , 2009, Chemical Society reviews.

[92]  J. Sessler,et al.  Modern reaction-based indicator systems. , 2009, Chemical Society reviews.

[93]  I. Boldog,et al.  Hydrogen Bonding Patterns and Supramolecular Structure of 4,4′-Bipyrazolium Salts , 2009 .

[94]  Philip A. Gale,et al.  Anion receptor chemistry: highlights from 2007. , 2009, Chemical Society reviews.

[95]  J. Steed Coordination and organometallic compounds as anion receptors and sensors. , 2009, Chemical Society reviews.

[96]  Juyoung Yoon,et al.  Chemosensors for pyrophosphate. , 2009, Accounts of chemical research.

[97]  L. Fabbrizzi,et al.  Anion receptors that contain metals as structural units. , 2009, Chemical communications.

[98]  F. Gabbaï,et al.  Fluoride ion recognition by chelating and cationic boranes. , 2009, Accounts of chemical research.

[99]  Julio Pérez,et al.  Stable metal-organic complexes as anion hosts. , 2008, Chemical Society reviews.

[100]  Juyoung Yoon,et al.  A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. , 2008, Chemical Society reviews.

[101]  Julio Pérez,et al.  Organometallic complexes as anion hosts. , 2008, Chemical communications.

[102]  Anjul Kumar,et al.  Anion recognition by 1,2,3-triazolium receptors: application of click chemistry in anion recognition. , 2008, Organic letters.

[103]  P. Prados,et al.  Recent Advances in Macrocyclic and Macrocyclic-Based Anion Receptors , 2008 .

[104]  Philip A. Gale,et al.  Anion receptors based on organic frameworks: highlights from 2005 and 2006. , 2008, Chemical Society reviews.

[105]  K. Pavani,et al.  Bile acid-based cyclic bisbenzimidazolium receptors for anion recognition: highly improved receptors for fluoride and chloride ions. , 2007, The Journal of organic chemistry.

[106]  K. Zheng,et al.  Anion-selective interaction and colorimeter by an optical metalloreceptor based on ruthenium(II) 2,2'-biimidazole: hydrogen bonding and proton transfer. , 2007, Inorganic chemistry.

[107]  M. Rager,et al.  Supramolecular cobalt cages and coordination polymers templated by anion guests: self-assembly, structures, and magnetic properties. , 2007, Chemistry.

[108]  B. Colasson,et al.  Redox-driven intramolecular anion translocation between a metal centre and a hydrogen-bond-donating compartment. , 2007, Chemistry.

[109]  P. Beer,et al.  Interweaving anion templation. , 2007, Accounts of chemical research.

[110]  Philip A. Gale,et al.  Conformational control of HCl co-transporter: imidazole functionalised isophthalamide vs. 2,6-dicarboxamidopyridine. , 2007, Chemical communications.

[111]  A. Rheingold,et al.  Pyrazole complexes as anion receptors: effects of changing the metal, the pyrazole substitution pattern, and the number of pyrazole ligands. , 2007, Inorganic chemistry.

[112]  Yoshihiro Ito,et al.  Di-pyrrolyl-pyrazoles: anion receptors in protonated form and efficient building blocks for organized structures. , 2007, Chemical communications.

[113]  C. Brückner,et al.  A versatile building block for pyrazole-pyrrole hybrid macrocycles. , 2007, Chemical communications.

[114]  Kiyoshi Sato,et al.  Allosteric anion recognition by metal complexation of tris(bipyridine–imidazolium) ligand , 2007 .

[115]  M. Mcpartlin,et al.  Biimidazole and bis(amide)bipyridine molybdenum carbonyl complexes as anions receptors. , 2007, Inorganic chemistry.

[116]  P. Beer,et al.  Anion templated assembly of mechanically interlocked structures. , 2007, Chemical Society reviews.

[117]  Daniel T. Thangadurai,et al.  Quinoxaline-imidazolium receptors for unique sensing of pyrophosphate and acetate by charge transfer. , 2007, Organic letters.

[118]  Philip A. Gale,et al.  Anion coordination and anion-templated assembly: Highlights from 2002 to 2004 , 2006 .

[119]  T. Gunnlaugsson,et al.  Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors , 2006 .

[120]  Md. Alamgir Hossain,et al.  Influence of dimensionality and charge on anion binding in amide-based macrocyclic receptors , 2006 .

[121]  J. Steed,et al.  A modular approach to organic, coordination complex and polymer based podand hosts for anions , 2006 .

[122]  J. Sessler,et al.  Receptors for tetrahedral oxyanions , 2006 .

[123]  Bradley D. Smith,et al.  Anion recognition using dimetallic coordination complexes , 2006 .

[124]  M. Boiocchi,et al.  A metal-based trisimidazolium cage that provides six C-H hydrogen-bond-donor fragments and includes anions. , 2006, Angewandte Chemie.

[125]  Jonathan W Steed,et al.  A modular approach to anion binding podands: adaptability in design and synthesis leads to adaptability in properties. , 2006, Chemical communications.

[126]  Philip A. Gale,et al.  Structural and molecular recognition studies with acyclic anion receptors. , 2006, Accounts of chemical research.

[127]  J. Schatz,et al.  Influence of the Number and Geometry of Binding Sites on Host–Guest Affinity: Imidazolium-Substituted Receptor Molecules for Small Inorganic Anions , 2006 .

[128]  Juyoung Yoon,et al.  Imidazolium receptors for the recognition of anions. , 2006, Chemical Society reviews.

[129]  Julio Pérez,et al.  Pyrazole complexes as anion receptors. , 2006, Chemistry.

[130]  Jongmin Kang,et al.  Acetate-Selective Anion Receptor with Methylene-Bridged Bis-Imidazolium Rings , 2006 .

[131]  D. Powell,et al.  Trapped bifluoride. , 2006, Angewandte Chemie.

[132]  Wallace W. H. Wong,et al.  Tetrakis(imidazolium) macrocyclic receptors for anion binding. , 2005, Organic & biomolecular chemistry.

[133]  Jongmin Kang,et al.  Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene , 2005 .

[134]  T. Gunnlaugsson,et al.  Responsive lanthanide luminescent cyclen complexes: from switching/sensing to supramolecular architectures. , 2005, Chemical communications.

[135]  Kwang S Kim,et al.  A calix[4]imidazolium[2]pyridine as an anion receptor. , 2005, Angewandte Chemie.

[136]  T. Gunnlaugsson,et al.  Fluorescent Photoinduced Electron Transfer (PET) Sensors for Anions; From Design to Potential Application , 2005, Journal of Fluorescence.

[137]  Julio Pérez,et al.  Cationic fac-tris(pyrazole) complexes as anion receptors. , 2005, Chemical communications.

[138]  T. Aida,et al.  Phosphorescent organogels via "metallophilic" interactions for reversible RGB-color switching. , 2005, Journal of the American Chemical Society.

[139]  Long-gen Zhu,et al.  Imidazolidinium-based robust crypt with unique selectivity for fluoride anion. , 2004, Chemical communications.

[140]  L. Lamarque,et al.  New 1H-pyrazole-containing polyamine receptors able to complex L-glutamate in water at physiological pH values. , 2004, Journal of the American Chemical Society.

[141]  Kwang Soo Kim,et al.  Highly effective fluorescent sensor for H2PO4(-). , 2004, The Journal of organic chemistry.

[142]  E. Anslyn,et al.  Energetics of phosphate binding to ammonium and guanidinium containing metallo-receptors in water. , 2003, Journal of the American Chemical Society.

[143]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[144]  Kwang Soo Kim,et al.  New fluorescent photoinduced electron transfer chemosensor for the recognition of H2PO4-. , 2003, Organic letters.

[145]  E. Anslyn,et al.  Determination of inorganic phosphate in serum and saliva using a synthetic receptor. , 2003, Organic letters.

[146]  Philip A. Gale,et al.  Pyrrolic and polypyrrolic anion binding agents , 2003 .

[147]  E. Anslyn,et al.  C3v symmetric receptors show high selectivity and high affinity for phosphate. , 2003, Journal of the American Chemical Society.

[148]  A. Lees,et al.  Transition metal based supramolecular systems: synthesis, photophysics, photochemistry and their potential applications as luminescent anion chemosensors , 2002 .

[149]  Xiaoming Liu,et al.  3(5)-tert-butylpyrazole is a ditopic receptor for zinc(II) halides. , 2002, Chemical communications.

[150]  E. Anslyn,et al.  Teaching old indicators new tricks. , 2001, Accounts of chemical research.

[151]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[152]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[153]  L. Pérez-García,et al.  Anion Template-Directed Synthesis of Dicationic [14]Imidazoliophanes , 1999 .

[154]  C. Alvarez-Rúa,et al.  Hydrogen bonded driven anion binding by dicationic [14]imidazoliophanes , 1999 .

[155]  P. Beer,et al.  Molecular recognition of anions by synthetic receptors. , 1997, Current opinion in chemical biology.

[156]  D. Reger,et al.  Lead(II) Complexes Containing Two Different Polydentate Ligands. Crystal and Molecular Structure of [HB(3,5-Me2pz)3]Pb(3,5-Me2pzH)3Cl (pz = Pyrazolyl Ring), a Cationic-Anionic, Double-Coordination Complex , 1994 .

[157]  Charles J. Pedersen,et al.  The Discovery of Crown Ethers (Noble Lecture) , 1988 .

[158]  D. Christen,et al.  The Microwave Spectrum of Imidazole; Complete Structure and the Electron Distribution from Nuclear Quadrupole Coupling Tensors and Dipole Moment Orientation , 1981 .

[159]  H. Simmons,et al.  Macrobicyclic amines. III. Encapsulation of halide ions by in,in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions , 1968 .

[160]  Charles J. Pedersen,et al.  Cyclic polyethers and their complexes with metal salts , 1967 .

[161]  D. D. Perrin Dissociation Constants of Organic Bases in Aqueous Solution , 1965 .