A new integrable convergence acceleration algorithm for computing Brezinski–Durbin–Redivo-Zaglia’s sequence transformation via pfaffians
暂无分享,去创建一个
[1] Harold Cohen,et al. DETERMINANTS AND MATRICES , 2019, Essentials of Mathematical Methods in Science and Engineering.
[2] C. Brezinski,et al. Shanks function transformations in a vector space , 2017 .
[3] Lena Vogler,et al. The Direct Method In Soliton Theory , 2016 .
[4] H. Tam,et al. A new method to generate non-autonomous discrete integrable systems via convergence acceleration algorithms , 2015, European Journal of Applied Mathematics.
[5] Yi He,et al. An Extended Multistep Shanks Transformation and Convergence Acceleration Algorithm with Their Convergence and Stability Analysis , 2013, Numerische Mathematik.
[6] Claude Brezinski,et al. Multistep έ-algorithm, Shanks' transformation, and the Lotka-Volterra system by Hirota's method , 2012, Math. Comput..
[7] H. Miki,et al. Discrete Spectral Transformations of Skew Orthogonal Polynomials and Associated Discrete Integrable Systems , 2011, 1111.7262.
[8] Claude Brezinski,et al. Confluent Form of the Multistep ɛ‐Algorithm, and the Relevant Integrable System , 2011 .
[9] Yi He,et al. Convergence Acceleration Algorithm via an Equation Related to the Lattice Boussinesq Equation , 2011, SIAM J. Sci. Comput..
[10] Jianqing Sun,et al. Q-difference and confluent forms of the lattice Boussinesq equation and the relevant convergence acceleration algorithms , 2011 .
[11] C. Brezinski,et al. A generalization of the G-transformation and the related algorithms , 2010 .
[12] Claude Brezinski,et al. Cross rules and non-Abelian lattice equations for the discrete and confluent non-scalar ε-algorithms , 2010 .
[13] Hon-Wah Tam,et al. A q-difference version of the ϵ-algorithm , 2009 .
[14] C. Brezinski,et al. Generalizations of Aitken's process for accelerating the convergence of sequences , 2007 .
[15] Richard S. Varga,et al. Extrapolation methods: theory and practice , 1993, Numerical Algorithms.
[16] Yoshimasa Nakamura,et al. An application of the discrete Lotka–Volterra system with variable step-size to singular value computation , 2004 .
[17] Yoshihiro Ohta. Special Solutions of Discrete Integrable Systems , 2004 .
[18] 広田 良吾,et al. The direct method in soliton theory , 2004 .
[19] Yoshimasa Nakamura,et al. On the convergence of a solution of the discrete Lotka-Volterra system , 2002 .
[20] Yoshimasa Nakamura,et al. The discrete Lotka-Volterra system computes singular values , 2001 .
[21] Claude Brezinski,et al. Convergence acceleration during the 20th century , 2000 .
[22] Yoshimasa Nakamura,et al. Calculating Laplace Transforms in Terms of the Toda Molecule , 1998, SIAM J. Sci. Comput..
[23] J. Satsuma,et al. THE TODA MOLECULE EQUATION AND THE ε-ALGORITHM , 1998 .
[24] Alfred Ramani,et al. Integrable difference equations and numerical analysis algorithms , 1996 .
[25] Claude Brezinski,et al. Extrapolation algorithms and Pade´ approximations: a historical survey , 1996 .
[26] Á.,et al. Discrete soliton equations and convergence acceleration algorithms , 1995 .
[27] B. Grammaticos,et al. Integrable lattices and convergence acceleration algorithms , 1993 .
[28] E. J. Weniger. Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989, math/0306302.
[29] Carsten Carstensen,et al. On a general epsilon algorithm , 1989 .
[30] Claude Brezinski,et al. Quasi-Linear Extrapolation Processes , 1988 .
[31] Moulay Driss Benchiboun. Etude de certaines généralisations du procédé d'Aitken et comparaison de procédés d'accélération de la convergence , 1987 .
[32] Richard A. Brualdi,et al. Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley , 1983 .
[33] P. Wynn,et al. Sequence Transformations and their Applications. , 1982 .
[34] W. Symes. The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .
[35] R. Hirota. Discrete Analogue of a Generalized Toda Equation , 1981 .
[36] Claude Brezinski,et al. A general extrapolation algorithm , 1980 .
[37] E. J. Barbeau,et al. Euler Subdues a very Obstreperous Series , 1979 .
[38] T. Atchison,et al. An Algorithm for the Computation of the Higher Order G-Transformation , 1973 .
[39] Eduardo R. Caianiello,et al. Combinatorics and renormalization in quantum field theory , 1973 .
[40] C. Brezinski,et al. Conditions d'application et de convergence de procédés d'extrapolation , 1972 .
[41] D. Shanks. Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .
[42] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus , 1954 .
[43] H. R. Pitt. Divergent Series , 1951, Nature.
[44] PSIG BIGPSI,et al. AN ALGORITHM FOR A GENERALIZATION OF THE RICHARDSON EXTRAPOLATION PROCESS , 2022 .