A new image coder is described in this paper. Since it is based on the Discrete Wavelet Transform (DWT), it yields good Rate/Distortion (R/D) performance. However, our proposal focuses on overcoming the two main problems of wavelet-based image coders: they are typically implemented by memory-intensive and time-consuming algorithms. In order to avoid these common drawbacks, we ought to tackle these problems in the main stages of this type of coder, i.e., both the wavelet computation and the entropy coding of the coefficients. The proposed algorithms are described in such a manner that they can be implemented in any programming language straightforwardly. The numerical results show that while the R/D performance achieved by our proposal is similar to the state-of-the-art coders, such as SPIHT and JPEG2000/Jasper, the amount of memory required in our algorithm is reduced drastically (in the order of 25 to 35 times less memory), and its execution time is lower (three times lower than SPIHT, and more than ten times lower than JPEG 2000/Jasper).
[1]
William A. Pearlman,et al.
A new, fast, and efficient image codec based on set partitioning in hierarchical trees
,
1996,
IEEE Trans. Circuits Syst. Video Technol..
[2]
G. MallatS..
A Theory for Multiresolution Signal Decomposition
,
1989
.
[3]
Antonio Ortega,et al.
Line-based, reduced memory, wavelet image compression
,
2000,
IEEE Trans. Image Process..
[4]
Mohan Vishwanath.
The recursive pyramid algorithm for the discrete wavelet transform
,
1994,
IEEE Trans. Signal Process..
[5]
Stéphane Mallat,et al.
A Theory for Multiresolution Signal Decomposition: The Wavelet Representation
,
1989,
IEEE Trans. Pattern Anal. Mach. Intell..