Applied Chemometrics: From Chemical Data to Relevant Information

The basic principles of multivariate data analysis in chemometrics are explained. The most used methods based on linear latent variables are discussed (principal component analysis, linear discriminant analysis) and demonstrated by examples from analytical chemistry and spectroscopy.

[1]  M. J. Adams,et al.  Chemometrics in Analytical Spectroscopy , 1995 .

[2]  Kurt Varmuza,et al.  Automatic classification of infrared spectra using a set of improved expert-based features , 1999 .

[3]  Neil A. B. Gray,et al.  Computer-assisted structure elucidation , 1986 .

[4]  Richard Kramer,et al.  Chemometric Techniques For Quantitative Analysis , 1998 .

[5]  Kurt Varmuza,et al.  Systematic structure elucidation of organic compounds by mass spectra classification , 1997 .

[6]  J. Nash Compact Numerical Methods for Computers , 2018 .

[7]  Kurt Varmuza,et al.  Chemometrics: Multivariate View on Chemical Problems , 2002 .

[8]  Jure Zupan,et al.  Algorithms for Chemists , 1989 .

[9]  Kurt Varmuza,et al.  Mass Spectral Classifiers for Supporting Systematic Structure Elucidation , 1996, J. Chem. Inf. Comput. Sci..

[10]  Johann Gasteiger,et al.  Neural networks in chemistry and drug design , 1999 .

[11]  S. D. Jong,et al.  Handbook of Chemometrics and Qualimetrics , 1998 .

[12]  William H. Press,et al.  Numerical recipes , 1990 .

[13]  Kurt Varmuza,et al.  Polycyclische aromatische Verbindungen in der Atmosphäre von Linz (Österreich) , 1988 .

[14]  Kurt Varmuza,et al.  Pattern recognition in chemistry , 1980 .

[15]  Randall D. Tobias,et al.  Chemometrics: A Practical Guide , 1998, Technometrics.

[16]  P. Geladi Notes on the history and nature of partial least squares (PLS) modelling , 1988 .

[17]  M J R Healy,et al.  Matrices for Statistics , 1986 .