Temperature and Impurity Concentration Effects on Degradation of Nickel/Yttria‐stabilised Zirconia Anode in PH3‐Containing Coal Syngas

Degradation of the Ni/yttria-stabilised zirconia (YSZ) anode of the solid oxide fuel cell has been evaluated in the coal syngas containing different PH3 concentrations in the temperature range from 750 to 900 °C. Thermodynamic equilibrium calculations show that PH3 in the coal syngas gas is converted mostly to P2O3 at 750–900 °C. The phosphorous impurity reacts with the Ni-YSZ anode to form phosphates. The P-impurity poisoning leads to the deactivation of the Ni catalyst and to the reduction in the electronic conductivity of the anode. The impurity poisoning effect on the anode is exacerbated by increase in the temperature and/or the PH3 concentration.

[1]  Ellen Ivers-Tiffée,et al.  Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes , 2002 .

[2]  Toshio Maruyama,et al.  Properties of Ni/YSZ cermet as anode for SOFC , 2000 .

[3]  R. Mark Ormerod,et al.  Running solid oxide fuel cells on biogas , 2003 .

[4]  Trace element partitioning during coal gasification , 1996 .

[5]  V. Birss,et al.  Synthesis and Performance of Sol-Gel Prepared Ni-YSZ Cermet SOFC Anodes , 2005 .

[6]  Phillip N. Hutton,et al.  A cell-level model for a solid oxide fuel cell operated with syngas from a gasification process , 2005 .

[7]  I. Celik,et al.  Effects of coal syngas impurities on anodes of solid oxide fuel cells , 2008 .

[8]  R. Gemmen,et al.  The effect of IGFC warm gas cleanup system conditions on the gas-solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes , 2006 .

[9]  Ernst Riensche,et al.  Optimization of a 200 kW SOFC cogeneration power plant. Part I: Variation of process parameters , 1998 .

[10]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[11]  Nianqiang Wu,et al.  Electrochemical and microstructural analysis of nickel–yttria-stabilized zirconia electrode operated in phosphorus-containing syngas , 2008 .

[12]  Scott A. Barnett,et al.  Operation of anode-supported solid oxide fuel cells on methane and natural gas , 2003 .

[13]  Jason P. Trembly,et al.  Effects of coal syngas and H2S on the performance of solid oxide fuel cells: Single-cell tests , 2006 .

[14]  K. Hassmann SOFC Power Plants, the Siemens‐Westinghouse Approach , 2001 .

[15]  S. Park,et al.  The effect of phosphate treatment on nickel dispersion on MCM-41 mesoporous material , 2003 .

[16]  Robert J. Kee,et al.  Solid Oxide Fuel Cells: Operating Principles, Current Challenges, and the Role of Syngas , 2008 .

[17]  V G Krishna,et al.  TECHNICAL PROGRESS REPORT. , 1970 .

[18]  Microstructure of Ni/YSZ cermets according to particle size of precursor powders and their anodic performances in SOFC , 2000 .

[19]  E. Milke,et al.  Thermochemical data of elements and compounds , 1999 .

[20]  M. Fowler,et al.  Experimental and modeling study of solid oxide fuel cell operating with syngas fuel , 2006 .

[21]  Mogens Bjerg Mogensen,et al.  Oxidation of hydrogen on Ni/yttria-stabilized zirconia cermet anodes , 1997 .

[22]  J. P. Strakey,et al.  U.S. DOE fossil energy fuel cells program , 2006 .

[23]  William R. Smith,et al.  Chemical Reaction Equilibrium Analysis: Theory and Algorithms , 1982 .

[24]  Francisco Jurado Fuzzy Logic Applied to the Inverter of a SOFC Power Plant , 2004 .

[25]  S. Barnett,et al.  An Octane-Fueled Solid Oxide Fuel Cell , 2005, Science.

[26]  Serguei N. Lvov,et al.  Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell , 2004 .