UV Dust Attenuation in Normal Star-Forming Galaxies. I. Estimating the LTIR/LFUV Ratio

We analyze the dust attenuation properties of a volume-limited, optically selected sample of normal star-forming galaxies in nearby clusters as observed by GALEX. The internal attenuation is estimated using three independent indicators, namely, the ratio of the total infrared to far-ultraviolet emission, the ultraviolet spectral slope β, and the Balmer decrement. We confirm that normal galaxies follow a LTIR/LFUV-β relation offset from the one observed for starburst galaxies. This offset is found to weakly correlate with the birthrate parameter and thus with the galaxy star formation history. We study the correlations of dust attenuation with other global properties, such as the metallicity, dynamical mass, ionized gas attenuation, Hα emission, and mass surface density. Metal-rich, massive galaxies are, as expected, more heavily extinguished in the UV than are small systems. For the same gas metallicity normal galaxies have lower LTIR/LFUV ratios than starbursts, in agreement with the difference observed in the LTIR/LFUV-β relation. Unexpectedly, however, we find that normal star-forming galaxies follow exactly the same relationship between metallicity and ultraviolet spectral slope β determined for starbursts, complicating our understanding of dust properties. This result might indicate a different dust geometry between normal galaxies and starbursts, but it could also be due to aperture effects eventually present in the IUE starbursts data set. The present multiwavelength study allows us to provide some empirical relations from which the total infrared to far-ultraviolet ratio (LTIR/LFUV) can be estimated when far-infrared data are absent.

[1]  L. Kewley,et al.  Star Formation in NGC 5194 (M51a): The Panchromatic View from GALEX to Spitzer , 2005, astro-ph/0507427.

[2]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[3]  Caltech,et al.  X-ray properties of UV-selected star-forming galaxies at z ∼ 1 in the Hubble Deep Field North , 2005, astro-ph/0501411.

[4]  D. Schiminovich,et al.  Testing the Empirical Relation between Ultraviolet Color and Attenuation of Galaxies , 2005 .

[5]  L. Kewley,et al.  Aperture Effects on Star Formation Rate, Metallicity, and Reddening , 2005, astro-ph/0501229.

[6]  A. Szalay,et al.  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.

[7]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[8]  A. Szalay,et al.  The On-Orbit Performance of the Galaxy Evolution Explorer , 2004, astro-ph/0411310.

[9]  G. Gavazzi,et al.  The structure of elliptical galaxies in the Virgo cluster. Results from the INT Wide Field Survey , 2004, astro-ph/0410228.

[10]  A. Boselli,et al.  The radial extinction profiles of late-type galaxies , 2004, astro-ph/0407617.

[11]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[12]  G. Gavazzi,et al.  Tracing the star formation history of cluster galaxies using the H$\alpha$/UV flux ratio , 2004, astro-ph/0403620.

[13]  G. Gavazzi,et al.  Spectrophotometry of galaxies in the Virgo cluster , II. The data , 2004, astro-ph/0401636.

[14]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[15]  S. M. Fall,et al.  Star formation history and dust content of galaxies drawn from ultraviolet surveys , 2003, astro-ph/0312474.

[16]  A. Inoue Evolution of Dust-to-Metal Ratio in Galaxies , 2003, astro-ph/0308204.

[17]  -INAF,et al.  Dust and nebular emission. I. Models for normal galaxies , 2003, astro-ph/0307096.

[18]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[19]  G. Gavazzi,et al.  UV to radio centimetric spectral energy distributions of optically-selected late-type galaxies in the Virgo cluster , 2003, astro-ph/0301134.

[20]  G. Gavazzi,et al.  Introducing GOLDMine: A new galaxy database on the WEB , 2002, astro-ph/0212257.

[21]  G. Gavazzi,et al.  Spectrophotometry of Galaxies in the Virgo Cluster. I. The Star Formation History , 2002 .

[22]  L. Kewley,et al.  The Hα and Infrared Star Formation Rates for the Nearby Field Galaxy Survey , 2002, astro-ph/0208508.

[23]  Eric F. Bell Dust-induced Systematic Errors in Ultraviolet-derived Star Formation Rates , 2002, astro-ph/0205439.

[24]  G. Gavazzi,et al.  Hα surface photometry of galaxies in the Virgo cluster III. Observations with INT and NOT 2.5 m telescopes , 2002 .

[25]  G. Gavazzi,et al.  Hα surface photometry of galaxies in the Virgo cluster I. Observations with the San Pedro Martir 2.1 m telescope , 2002 .

[26]  G. Gavazzi,et al.  H$\alpha$ surface photometry of galaxies in the Virgo cluster - II. Observations with the OHP and Calar Alto 1.2 m telescopes , 2002 .

[27]  G. Gavazzi,et al.  Molecular gas in normal late-type galaxies ? , 2002 .

[28]  V. Buat Star Formation and Dust Extinction in Nearby Star Forming and Starburst Galaxies , 2002, astro-ph/0201281.

[29]  G. Gavazzi,et al.  A Deep Halpha Survey of Galaxies in the Two Nearby Clusters Abell1367 and Coma: The Halpha Luminos , 2002, astro-ph/0201264.

[30]  D. Calzetti The Dust Opacity of Star‐forming Galaxies , 2001, astro-ph/0109035.

[31]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[32]  E. Bell,et al.  A Comparison of Ultraviolet Imaging Telescope Far-Ultraviolet and Hα Star Formation Rates , 2001 .

[33]  S. Charlot,et al.  Nebular emission from star-forming galaxies , 2001, astro-ph/0101097.

[34]  G. Gavazzi,et al.  1.65 Micron (H Band) Surface Photometry of Galaxies. VI. The History of Star Formation in Normal Late-Type Galaxies , 2000, astro-ph/0011016.

[35]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[36]  E. Bell,et al.  A Comparison of UIT Far-Ultraviolet and H alpha Star Formation Rates , 2000, astro-ph/0010340.

[37]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[38]  K. Gordon,et al.  The Flux Ratio Method for Determining the Dust Attenuation of Starburst Galaxies , 1999, astro-ph/9912034.

[39]  K. Gordon,et al.  Multiple Scattering in Clumpy Media. II. Galactic Environments , 1999, astro-ph/9907342.

[40]  Yvan Dutil,et al.  Chemical Evidence for Morphological Evolution of Spiral Galaxies , 1999 .

[41]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[42]  Heidelberg,et al.  The 3D structure of the Virgo cluster from H-band Fundamental Plane and Tully—Fisher distance determinations , 1998, astro-ph/9812275.

[43]  J. Salzer,et al.  Spectroscopy of Outlying H II Regions in Spiral Galaxies: Abundances and Radial Gradients , 1998, astro-ph/9808315.

[44]  C. Blake,et al.  Measurement of the star formation rate from Hα in field galaxies at z=1 , 1998, astro-ph/9808276.

[45]  C. Leitherer,et al.  The Ultraviolet Spectroscopic Properties of Local Starbursts: Implications at High Redshift , 1998, astro-ph/9803185.

[46]  Milano,et al.  The Star Formation Properties of Disk Galaxies: Hα Imaging of Galaxies in the Coma Supercluster , 1998, astro-ph/9801279.

[47]  D. Calzetti Reddening and star formation in starburst galaxies , 1996, astro-ph/9610184.

[48]  T. Heckman,et al.  Internal Absorption and the Luminosity of Disk Galaxies , 1996 .

[49]  A. Kinney,et al.  The heating of dust in starburst galaxies: The contribution of the nonionizing radiation , 1995 .

[50]  R. Kennicutt,et al.  Past and Future Star Formation in Disk Galaxies , 1994 .

[51]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[52]  Robert C. Kennicutt,et al.  The Integrated spectra of nearby galaxies: General properties and emission line spectra , 1992 .

[53]  S. McGaugh,et al.  H II region abundances - Model oxygen line ratios , 1991 .

[54]  G. J. Babu,et al.  Linear regression in astronomy. II , 1990 .

[55]  N. Devereux,et al.  THE GAS DUST RATIO IN SPIRAL GALAXIES , 1990 .

[56]  R. Kennicutt,et al.  Oxygen Abundances in Nearby Dwarf Irregular Galaxies , 1989 .

[57]  G. Helou,et al.  IRAS observations of galaxies in the Virgo cluster area , 1988 .

[58]  A. Sandage,et al.  Studies of the Virgo Cluster. II - A catalog of 2096 galaxies in the Virgo Cluster area. , 1985 .

[59]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[60]  C. Heiles,et al.  Reddenings derived from H I and galaxy counts : accuracy and maps. , 1982 .

[61]  G. Gavazzi,et al.  Mid and Far IR properties of late-type galaxies in the Coma and A1367 clusters: ISOCAM and ISOPHOT observations , 2001 .

[62]  Timothy M. Heckman,et al.  Synthetic properties of starburst galaxies , 1995 .

[63]  T. Heckman,et al.  Accepted for publication in The Astronomical Journal , 1995 .

[64]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[65]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[66]  P. Wild,et al.  Catalogue of Galaxies and of Clusters of Galaxies , 1961 .

[67]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .