The crystallography of correlated disorder

Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems—even those as simple as water ice—that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.

[1]  M. S. Lehmann,et al.  Water Science Reviews 2: The Structure of Ice-Ih , 1986 .

[2]  R. Cava,et al.  Magnetoelastic excitations in the pyrochlore spin liquid Tb2Ti2O7. , 2013, Physical review letters.

[3]  Giulia Galli,et al.  β-Rhombohedral boron: at the crossroads of the chemistry of boron and the physics of frustration. , 2013, Chemical reviews.

[4]  Evidence for charge localization in the ferromagnetic phase of La{sub 1-x}Ca{sub x}MnO{sub 3} from high real-space-resolution x-ray diffraction , 1999, cond-mat/9907329.

[5]  Chiarotti,et al.  Ordering of the silver ions in alpha -AgI: A mechanism for the alpha - beta phase transition. , 1992, Physical review. B, Condensed matter.

[6]  L. Skinner,et al.  Area detector corrections for high quality synchrotron X-ray structure factor measurements , 2012 .

[7]  A. Heerdegen,et al.  Use of Monte Carlo simulation for the interpretation and analysis of diffuse scattering , 2010 .

[8]  Martin T. Dove,et al.  Dynamic structural disorder in cristobalite: neutron total scattering measurement and reverse Monte Carlo modelling , 2001 .

[9]  François-Xavier Coudert,et al.  Correlated Defect Nano-Regions in a Metal–Organic Framework , 2014, Nature Communications.

[10]  A. Soper,et al.  Structure and properties of an amorphous metal-organic framework. , 2010, Physical review letters.

[11]  W. David,et al.  Diffuse neutron scattering in benzil, C14D10O2, using the time‐of‐flight Laue technique , 2003 .

[12]  S. Stølen,et al.  Neutron total scattering study of the delta and beta phases of Bi2O3. , 2009, Dalton transactions.

[13]  P. Chupas,et al.  Single-crystal diffuse scattering studies on polymorphs of molecular crystals. I. The room-temperature polymorphs of the drug benzocaine. , 2009, Acta crystallographica. Section B, Structural science.

[14]  Y. Kao,et al.  Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7 , 2011, Nature Communications.

[15]  Yang Ren,et al.  Order and dynamics of intrinsic nanoscale inhomogeneities in manganites , 2007 .

[16]  Chick C. Wilson,et al.  SXD – the single-crystal diffractometer at the ISIS spallation neutron source , 2006 .

[17]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  G. Wannier,et al.  Antiferromagnetism. The Triangular Ising Net , 1950 .

[19]  A. Soper,et al.  NIMROD: The Near and InterMediate Range Order Diffractometer of the ISIS second target station. , 2010, The Review of scientific instruments.

[20]  M. Gingras,et al.  Spin Correlations in Ho2Ti2O7 , 2001 .

[21]  A. Soper,et al.  Extracting the pair distribution function from white-beam X-ray total scattering data , 2011 .

[22]  Hajime Tanaka,et al.  Frustration on the way to crystallization in glass , 2006 .

[23]  S. Calder,et al.  Measurement of the charge and current of magnetic monopoles in spin ice , 2009, Nature.

[24]  K. Lonsdale,et al.  An experimental study of diffuse X-ray reflexion by single crystals , 1941, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  W. David,et al.  Structural Phase Transitions in the Fullerene C60 , 1992 .

[26]  L. Daemen,et al.  Pair distribution function analysis of molecular compounds: significance and modeling approach discussed using the example of p‐terphenyl , 2012 .

[27]  L. Pauling The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement , 1935 .

[28]  J. Woicik,et al.  Local structure in perovskite (Ba,Sr)TiO3: Reverse Monte Carlo refinements from multiple measurement techniques , 2014 .

[29]  Raymond Withers,et al.  Disorder, structured diffuse scattering and the transmission electron microscope , 2005 .

[30]  I. Taylor,et al.  Diffuse scattering resulting from macromolecular frustration. , 2011, Acta crystallographica. Section B, Structural science.

[31]  R. Melko,et al.  Spin correlations in Ho2Ti2O7: a dipolar spin ice system. , 2001, Physical review letters.

[32]  J. Ketterson,et al.  Superconductivity: Novel Superconductors , 2008 .

[33]  M. Paściak,et al.  Monte Carlo and Molecular Dynamics Simulation of Disorder in the Ag+ Fast Ion Conductors Pearceite and Polybasite , 2011 .

[34]  Kim Lefmann,et al.  Avoided crossing of rattler modes in thermoelectric materials. , 2008, Nature materials.

[35]  Nicola Marzari,et al.  Dynamical structure, bonding, and thermodynamics of the superionic sublattice in alpha-AgI. , 2006, Physical review letters.

[36]  Reinhard B. Neder,et al.  Diffuse Scattering and Defect Structure Simulations: A Cook Book Using the Program DISCUS , 2009 .

[37]  R. Mcgreevy,et al.  Reverse Monte Carlo modelling , 2001 .

[38]  A. Goodwin,et al.  spinvert: a program for refinement of paramagnetic diffuse scattering data , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  K. Awaga,et al.  Exceptional dielectric phase transitions in a perovskite-type cage compound. , 2010, Angewandte Chemie.

[41]  Tacita Dean,et al.  The Structure of Ice , 1999, The Lancet.

[42]  Leslie Lamport,et al.  Basic Concepts , 1981, Advanced Course: Distributed Systems.

[43]  P. Damasceno,et al.  Predictive Self-Assembly of Polyhedra into Complex Structures , 2012, Science.

[44]  G. McIntyre,et al.  Emergent frustration in co-doped β-Mn. , 2013, Physical review letters.

[45]  S. Agrestini,et al.  Spin correlations in Ca 3 Co 2 O 6 : Polarized-neutron diffraction and Monte Carlo study , 2014 .

[46]  M. Green,et al.  Spin-Orbital Short-Range Order on a Honeycomb-Based Lattice , 2012, Science.

[47]  T. Proffen,et al.  Entropically Stabilized Local Dipole Formation in Lead Chalcogenides , 2010, Science.

[48]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[49]  J. Kreisel,et al.  Bifurcated Polarization Rotation in Bismuth‐Based Piezoelectrics , 2013 .

[50]  A. Guinier,et al.  Désordre linéaire dans les cristaux (cas du silicium, du quartz, et des pérovskites ferroélectriques) , 1970 .

[51]  Julyan H E Cartwright,et al.  Beyond crystals: the dialectic of materials and information , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  Klaus Koepernik,et al.  Stacked topological insulator built from bismuth-based graphene sheet analogues. , 2013, Nature materials.

[53]  Philippe Mendels,et al.  Spin-Lattice Coupling in Frustrated Antiferromagnets , 2009, 0907.1693.

[54]  T. Welberry,et al.  Monte Carlo Modeling of Diffuse Scattering from Single Crystals: The Program ZMC , 2011 .

[55]  Guangyong Xu,et al.  Phase instability induced by polar nanoregions in a relaxor ferroelectric system. , 2008, Nature materials.

[56]  S. Agrestini,et al.  Spin correlations in Ca3Co2O6: Polarized-neutron diffraction and Monte Carlo study , 2013, 1312.5243.

[57]  Matthew L. Baker,et al.  Structural Changes in a Marine Podovirus Associated with Release of its Genome into Prochlorococcus , 2010, Nature Structural &Molecular Biology.

[58]  I. Levin,et al.  Reverse Monte Carlo refinements of nanoscale atomic correlations using powder and single-crystal diffraction data , 2012 .

[59]  T. Weber,et al.  The three-dimensional pair distribution function analysis of disordered single crystals: basic concepts , 2012 .

[60]  K. Lonsdale X-ray study of crystal dynamics: An historical and critical survey of experiment and theory , 1942 .

[61]  D. Chernyshov,et al.  Diffuse scattering in Ih ice , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[62]  A. C. Lawson,et al.  Structures of the ferroelectric phases of barium titanate , 1993 .

[63]  A. Goodwin,et al.  Charge-ice dynamics in the negative thermal expansion material Cd(CN)2 , 2012, 1206.0437.

[64]  Elliott H. Lleb Residual Entropy of Square Ice , 1967 .

[65]  I. V. Grigorieva,et al.  Square ice in graphene nanocapillaries , 2015, Nature.

[66]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[67]  I. Swainson,et al.  Room temperature single-crystal diffuse scattering and ab initio lattice dynamics in CaTiSiO5 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[68]  Determination of phonon dispersion relations by X-ray thermal diffuse scattering , 2005 .

[69]  S. Müller,et al.  An accidental visualization of the Brillouin zone in an Ni–W alloy via diffuse scattering , 2013 .

[70]  J. Hanson,et al.  Rapid acquisition pair distribution function (RA-PDF) analysis. , 2003, cond-mat/0304638.

[71]  D. Keen A comparison of various commonly used correlation functions for describing total scattering , 2001 .

[72]  R. Whitfield,et al.  Distinguishing Types of Disorder in Diffuse Scattering: A Numerical Simulation Study , 2013, Metallurgical and Materials Transactions A.

[73]  T. Welberry,et al.  Calculation of Diffuse Scattering from Simulated Disordered Crystals: a Comparison with Optical Transforms , 1992 .

[74]  H. Sirringhaus,et al.  Measurement of molecular motion in organic semiconductors by thermal diffuse electron scattering. , 2013, Nature materials.