A group contribution method for estimation of glass-transition temperature of 1,3-dialkylimidazolium ionic liquids

Glass-transition temperature (Tg) of ionic liquids (ILs) plays a key role in assessment of their potential for electrolyte application purposes. In this communication, a new group contribution model is presented for the prediction of the Tg of 1,3-dialkylimidazolium, a class of ILs, which has great potentialities to serve as electrolyte. To develop this model, the contribution of ILs’ anions and cations is separately considered. This simple model shows a low average relative deviation of 1.94 % for a data set including 109 experimental glass-transition temperature.

[1]  Y. Jing,et al.  Physicochemical properties of ionic liquid analogue containing magnesium chloride as temperature and composition dependence , 2012, Journal of Thermal Analysis and Calorimetry.

[2]  Jürgen Garche,et al.  Encyclopedia of electrochemical power sources , 2009 .

[3]  F. Gharagheizi Prediction of the Standard Enthalpy of Formation of Pure Compounds Using Molecular Structure , 2009 .

[4]  Ali Eslamimanesh,et al.  Solubility Parameters of Nonelectrolyte Organic Compounds: Determination Using Quantitative Structure—Property Relationship Strategy , 2011 .

[5]  C. Afonso,et al.  Glass transition relaxation and fragility in two room temperature ionic liquids , 2003 .

[6]  A NEW ACCURATE NEURAL NETWORK QUANTITATIVE STRUCTURE- PROPERTY RELATIONSHIP FOR PREDICTION OF ? (LOWER CRITICAL SOLUTION TEMPERATURE) OF POLYMER SOLUTIONS , 2007 .

[7]  Ali Eslamimanesh,et al.  Empirical Method for Representing the Flash-Point Temperature of Pure Compounds , 2011 .

[8]  F. Gharagheizi A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure. , 2009, Journal of hazardous materials.

[9]  Suojiang Zhang,et al.  Ionic Liquids: Physicochemical Properties , 2009 .

[10]  M. Keating,et al.  TGA-MS study of the decomposition of phosphorus-containing ionic liquids trihexyl(tetradecyl)phosphonium decanoate and trihexyltetradecylphosphonium bis[(trifluoromethyl)sulfonyl] amide , 2011 .

[11]  F. Gharagheizi,et al.  Computation of Upper Flash Point of Chemical Compounds Using a Chemical Structure-Based Model , 2012 .

[12]  Mehdi Mehrpooya,et al.  Prediction of some important physical properties of sulfur compounds using quantitative structure–properties relationships , 2008, Molecular Diversity.

[13]  F. Gharagheizi,et al.  A Molecular‐Based Model for Prediction of Solubility of C60 Fullerene in Various Solvents , 2008 .

[14]  Jing Tong,et al.  Studies on thermochemical properties of ionic liquids based on transition metal , 2008 .

[15]  F. Gharagheizi,et al.  A simple correlation for prediction of heat capacities of ionic liquids , 2013 .

[16]  Farhad Gharagheizi,et al.  A quantitative structure–property relationship for determination of enthalpy of fusion of pure compounds , 2012, Journal of Thermal Analysis and Calorimetry.

[17]  Ali Eslamimanesh,et al.  Representation and Prediction of Molecular Diffusivity of Nonelectrolyte Organic Compounds in Water at Infinite Dilution Using the Artificial Neural Network-Group Contribution Method , 2011 .

[18]  Estimation of lower flammability limit temperature of chemical compounds using a corresponding state method , 2013 .

[19]  Fumiko Yonezawa,et al.  Glass Transition , 1990, Int. J. High Perform. Comput. Appl..

[20]  Prediction of Vaporization Enthalpy of Pure Compounds using a Group Contribution-Based Method , 2011 .

[21]  F. Gharagheizi A new group contribution-based model for estimation of lower flammability limit of pure compounds. , 2009, Journal of hazardous materials.

[22]  F. Gharagheizi,et al.  Determination of the glass transition temperature of ionic liquids: A molecular approach , 2012 .

[23]  F. Gharagheizi,et al.  Prediction of Triple-Point Temperature of Pure Components Using their Chemical Structures , 2010 .

[24]  A. Amarasekara,et al.  Thermal properties of sulfonic acid group functionalized Brönsted acidic ionic liquids , 2011 .

[25]  F. Gharagheizi Determination of normal boiling vaporization enthalpy using a new molecular-based model , 2012 .

[26]  Ali Eslamimanesh,et al.  Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water , 2012 .

[27]  H. Ohno ELECTROLYTES | Ionic Liquids , 2009 .

[28]  A group contribution method for estimation of glass transition temperature ionic liquids , 2012 .

[29]  Farhad Gharagheizi,et al.  An accurate model for prediction of autoignition temperature of pure compounds. , 2011, Journal of hazardous materials.

[30]  A simple equation for prediction of net heat of combustion of pure chemicals , 2008 .

[31]  F. Gharagheizi,et al.  Prediction of enthalpy of fusion of pure compounds using an Artificial Neural Network-Group Contribution method , 2011 .

[32]  J. Domínguez,et al.  Survey on ionic liquids effect based on metal anions over the thermal stability of heavy oil , 2009 .

[33]  Farhad Gharagheizi,et al.  QSPR Studies for Solubility Parameter by Means of Genetic Algorithm-Based Multivariate Linear Regression and Generalized Regression Neural Network , 2008 .

[34]  Farhad Gharagheizi,et al.  Use of Artificial Neural Network-Group Contribution Method to Determine Surface Tension of Pure Compounds , 2011 .

[35]  F. Gharagheizi,et al.  A predictive quantitative structure–property relationship for glass transition temperature of 1,3-dialkyl imidazolium ionic liquids , 2012, Journal of Thermal Analysis and Calorimetry.

[36]  Ali Eslamimanesh,et al.  Determination of Critical Properties and Acentric Factors of Pure Compounds Using the Artificial Neural Network Group Contribution Algorithm , 2011 .

[37]  F. Gharagheizi,et al.  A New Neural Network Group Contribution Method for Estimation of Upper Flash Point of Pure Chemicals , 2010 .

[38]  Mehdi Mehrpooya,et al.  Prediction of standard chemical exergy by a three descriptors QSPR model , 2007 .

[39]  T. Srinivasan,et al.  Thermochemical properties of some bis(trifluoromethyl-sulfonyl)imide based room temperature ionic liquids , 2009 .

[40]  F. Gharagheizi,et al.  Prediction of Standard Enthalpy of Formation by a QSPR Model , 2007, International Journal of Molecular Sciences.

[41]  Z. Zhang,et al.  Thermodynamic investigation of room temperature ionic liquid , 2006 .

[42]  Farhad Gharagheizi,et al.  Predictive Quantitative Structure–Property Relationship Model for the Estimation of Ionic Liquid Viscosity , 2012 .

[43]  Chemical Structure-Based Model for Estimation of the Upper Flammability Limit of Pure Compounds , 2010 .

[44]  F. Gharagheizi,et al.  A simple accurate model for prediction of flash point temperature of pure compounds , 2012, Journal of Thermal Analysis and Calorimetry.

[45]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[46]  Farhad Gharagheizi,et al.  Prediction of the Watson Characterization Factor of Hydrocarbon Components from Molecular Properties , 2008 .

[47]  Farhad Gharagheizi,et al.  Development of a group contribution method for determination of viscosity of ionic liquids at atmospheric pressure , 2012 .

[48]  F. Gharagheizi,et al.  Determination of Parachor of Various Compounds Using an Artificial Neural Network−Group Contribution Method , 2011 .

[49]  Juan A. Lazzús,et al.  A group contribution method to predict the glass transition temperature of ionic liquids , 2012 .

[50]  Ali Eslamimanesh,et al.  Representation/Prediction of Solubilities of Pure Compounds in Water Using Artificial Neural Network−Group Contribution Method , 2011 .

[51]  Quantitative structure—property relationship for thermal decomposition temperature of ionic liquids , 2012 .

[52]  F. Gharagheizi Determination of Diffusion Coefficient of Organic Compounds in Water Using a Simple Molecular-Based Method , 2012 .

[53]  F. Gharagheizi,et al.  A QSPR model for prediction of diffusion coefficient of non-electrolyte organic compounds in air at ambient condition. , 2012, Chemosphere.

[54]  Prediction of Standard Enthalpy of Combustion of Pure Compounds Using a Very Accurate Group-Contribution-Based Method , 2011 .

[55]  F. Gharagheizi,et al.  Prediction of molecular diffusivity of pure components into air: a QSPR approach. , 2008, Chemosphere.

[56]  F. Gharagheizi,et al.  Prediction of Crystal Lattice Energy Using Enthalpy of Sublimation: A Group Contribution-Based Model , 2011 .

[57]  F. Gharagheizi,et al.  Prediction of Henry’s Law Constant of Organic Compounds in Water from a New Group-Contribution-Based Model , 2010 .

[58]  Michael Freemantle,et al.  An Introduction to Ionic Liquids , 2010 .

[59]  F. Gharagheizi,et al.  Computation of normal melting temperature of ionic liquids using a group contribution method , 2012 .

[60]  Ali Eslamimanesh,et al.  Group contribution model for determination of molecular diffusivity of non-electrolyte organic compounds in air at ambient conditions , 2012 .

[61]  F. Gharagheizi,et al.  Group Contribution-Based Method for Determination of Solubility Parameter of Nonelectrolyte Organic Compounds , 2011 .

[62]  F. Gharagheizi,et al.  Prediction of Flash Point Temperature of Pure Components Using a Quantitative Structure–Property Relationship Model , 2008 .

[63]  Greg Parker,et al.  Encyclopedia of Materials: Science and Technology , 2001 .

[64]  Fionn Murtagh,et al.  Cluster Dissection and Analysis: Theory, Fortran Programs, Examples. , 1986 .

[65]  S. Godtfredsen,et al.  Ullmann ' s Encyclopedia of Industrial Chemistry , 2017 .

[66]  F. Gharagheizi Prediction of upper flammability limit percent of pure compounds from their molecular structures. , 2009, Journal of hazardous materials.

[67]  F. Gharagheizi,et al.  An accurate model for the prediction of the glass transition temperature of ammonium based ionic liquids: A QSPR approach , 2012 .

[68]  F. Gharagheizi Quantitative Structure−Property Relationship for Prediction of the Lower Flammability Limit of Pure Compounds , 2008 .

[69]  Farhad Gharagheizi,et al.  QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN , 2007 .

[70]  C. Schick,et al.  Thermochemistry of the pyridinium- and pyrrolidinium-based ionic liquids , 2013, Journal of Thermal Analysis and Calorimetry.

[71]  Farhad Gharagheizi New Neural Network Group Contribution Model for Estimation of Lower Flammability Limit Temperature of Pure Compounds , 2009 .

[72]  K.H.J. Buschow,et al.  Encyclopedia of Materials: Science and Technology , 2004 .

[73]  Farhad Gharagheizi,et al.  A statistical method for evaluation of the experimental phase equilibrium data of simple clathrate hydrates , 2012 .

[74]  F. Gharagheizi,et al.  QSPR approach for determination of parachor of non-electrolyte organic compounds , 2011 .

[75]  Ali Eslamimanesh,et al.  Handling a very large data set for determination of surface tension of chemical compounds using Quantitative Structure–Property Relationship strategy , 2011 .

[76]  F. Gharagheizi,et al.  QSPR Molecular Approach for Estimating Henry’s Law Constants of Pure Compounds in Water at Ambient Conditions , 2012 .

[77]  Farhad Gharagheizi,et al.  Estimation of Aniline Point Temperature of Pure Hydrocarbons: A Quantitative Structure−Property Relationship Approach , 2009 .

[78]  B. Marongiu,et al.  Excess enthalpy and excess volume for binary systems of two ionic liquids + water , 2011 .

[79]  Mehdi Mehrpooya,et al.  A Molecular Approach for the Prediction of Sulfur Compound Solubility Parameters , 2009 .

[80]  C. K. Andrade,et al.  Thermal study and evaluation of new menthol-based ionic liquids as polymeric additives , 2010 .

[81]  Ali Eslamimanesh,et al.  QSPR molecular approach for representation/prediction of very large vapor pressure dataset , 2012 .

[82]  F. Gharagheizi,et al.  Prediction of the θ(UCST) of Polymer Solutions: A Quantitative Structure-Property Relationship Study , 2009 .

[83]  F. Gharagheizi A new molecular-based model for prediction of enthalpy of sublimation of pure components , 2008 .

[84]  Farhad Gharagheizi,et al.  Ionic liquids: Prediction of melting point by molecular-based model , 2012 .

[85]  F. Gharagheizi,et al.  Group contribution model for estimation of surface tension of ionic liquids , 2012 .

[86]  F. Gharagheizi,et al.  Prediction of surface tension of ionic liquids by molecular approach , 2013 .

[87]  F. Gharagheizi,et al.  A predictive quantitative structure–property relationship for glass transition temperature of 1,3-dialkyl imidazolium ionic liquids , 2012, Journal of Thermal Analysis and Calorimetry.