Multidimensional Manifold Continuation for Adaptive Boundary-Value Problems

[1]  Brian Wyvill,et al.  A Survey on Implicit Surface Polygonization , 2015, ACM Comput. Surv..

[2]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[3]  Erich Hartmann,et al.  A marching method for the triangulation of surfaces , 1998, The Visual Computer.

[4]  Rainer Groh,et al.  Exploring the design space of nonlinear shallow arches with generalised path-following , 2018 .

[5]  John Guckenheimer,et al.  Invariant manifolds and global bifurcations. , 2015, Chaos.

[6]  Léonard Jaillet,et al.  Path Planning Under Kinematic Constraints by Rapidly Exploring Manifolds , 2013, IEEE Transactions on Robotics.

[7]  Christian Kuehn,et al.  Efficient gluing of numerical continuation and a multiple solution method for elliptic PDEs , 2014, Appl. Math. Comput..

[8]  D. Bachrathy,et al.  Bisection method in higher dimensions and the efficiency number , 2012 .

[9]  Bernd Krauskopf,et al.  Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields , 2010 .

[10]  Jean-Daniel Boissonnat,et al.  Triangulating Smooth Submanifolds with Light Scaffolding , 2010, Math. Comput. Sci..

[11]  Louis A. Romero,et al.  Bifurcation Tracking Algorithms and Software for Large Scale Applications , 2005, Int. J. Bifurc. Chaos.

[12]  Michael E. Henderson,et al.  Classification of the Spatial Equilibria of the Clamped elastica: Numerical Continuation of the Solution Set , 2004, Int. J. Bifurc. Chaos.

[13]  Randy C. Paffenroth,et al.  Elemental Periodic orbits Associated with the libration Points in the Circular Restricted 3-Body Problem , 2007, Int. J. Bifurc. Chaos.

[14]  Josep M. Porta,et al.  Planning Singularity-Free Paths on Closed-Chain Manipulators , 2013, IEEE Transactions on Robotics.

[15]  Craig A. Knoblock,et al.  A Survey of Digital Map Processing Techniques , 2014, ACM Comput. Surv..

[16]  Frank Schilder,et al.  Recipes for Continuation , 2013, Computational science and engineering.

[17]  W. Rheinboldt MANPAK: A set of algorithms for computations on implicitly defined manifolds , 1996 .

[18]  Alexandre Goldsztejn,et al.  Certified Parallelotope Continuation for One-Manifolds , 2013, SIAM J. Numer. Anal..

[19]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[20]  Léonard Jaillet,et al.  Exploring the energy landscapes of flexible molecular loops using higher‐dimensional continuation , 2013, J. Comput. Chem..

[21]  Jean-Philippe Lessard,et al.  Computation of Smooth Manifolds Via Rigorous Multi-parameter Continuation in Infinite Dimensions , 2016, Found. Comput. Math..

[22]  A. R. Humphries,et al.  Boundary-value problem formulations for computing invariant manifolds and connecting orbits in the circular restricted three body problem , 2012 .

[23]  B. Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems , 2007 .

[24]  Serafim Rodrigues,et al.  On the numerical Continuation of Isolas of Equilibria , 2012, Int. J. Bifurc. Chaos.

[25]  Michael E. Henderson,et al.  Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.