Multidimensional Manifold Continuation for Adaptive Boundary-Value Problems
暂无分享,去创建一个
Harry Dankowicz | Yuqing Wang | Michael E. Henderson | Frank Schilder | H. Dankowicz | M. Henderson | F. Schilder | Yuqing Wang
[1] Brian Wyvill,et al. A Survey on Implicit Surface Polygonization , 2015, ACM Comput. Surv..
[2] John Guckenheimer,et al. Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..
[3] Erich Hartmann,et al. A marching method for the triangulation of surfaces , 1998, The Visual Computer.
[4] Rainer Groh,et al. Exploring the design space of nonlinear shallow arches with generalised path-following , 2018 .
[5] John Guckenheimer,et al. Invariant manifolds and global bifurcations. , 2015, Chaos.
[6] Léonard Jaillet,et al. Path Planning Under Kinematic Constraints by Rapidly Exploring Manifolds , 2013, IEEE Transactions on Robotics.
[7] Christian Kuehn,et al. Efficient gluing of numerical continuation and a multiple solution method for elliptic PDEs , 2014, Appl. Math. Comput..
[8] D. Bachrathy,et al. Bisection method in higher dimensions and the efficiency number , 2012 .
[9] Bernd Krauskopf,et al. Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields , 2010 .
[10] Jean-Daniel Boissonnat,et al. Triangulating Smooth Submanifolds with Light Scaffolding , 2010, Math. Comput. Sci..
[11] Louis A. Romero,et al. Bifurcation Tracking Algorithms and Software for Large Scale Applications , 2005, Int. J. Bifurc. Chaos.
[12] Michael E. Henderson,et al. Classification of the Spatial Equilibria of the Clamped elastica: Numerical Continuation of the Solution Set , 2004, Int. J. Bifurc. Chaos.
[13] Randy C. Paffenroth,et al. Elemental Periodic orbits Associated with the libration Points in the Circular Restricted 3-Body Problem , 2007, Int. J. Bifurc. Chaos.
[14] Josep M. Porta,et al. Planning Singularity-Free Paths on Closed-Chain Manipulators , 2013, IEEE Transactions on Robotics.
[15] Craig A. Knoblock,et al. A Survey of Digital Map Processing Techniques , 2014, ACM Comput. Surv..
[16] Frank Schilder,et al. Recipes for Continuation , 2013, Computational science and engineering.
[17] W. Rheinboldt. MANPAK: A set of algorithms for computations on implicitly defined manifolds , 1996 .
[18] Alexandre Goldsztejn,et al. Certified Parallelotope Continuation for One-Manifolds , 2013, SIAM J. Numer. Anal..
[19] Willy Govaerts,et al. Numerical methods for bifurcations of dynamical equilibria , 1987 .
[20] Léonard Jaillet,et al. Exploring the energy landscapes of flexible molecular loops using higher‐dimensional continuation , 2013, J. Comput. Chem..
[21] Jean-Philippe Lessard,et al. Computation of Smooth Manifolds Via Rigorous Multi-parameter Continuation in Infinite Dimensions , 2016, Found. Comput. Math..
[22] A. R. Humphries,et al. Boundary-value problem formulations for computing invariant manifolds and connecting orbits in the circular restricted three body problem , 2012 .
[23] B. Krauskopf,et al. Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems , 2007 .
[24] Serafim Rodrigues,et al. On the numerical Continuation of Isolas of Equilibria , 2012, Int. J. Bifurc. Chaos.
[25] Michael E. Henderson,et al. Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.