A Wasserstein Approach to the One-Dimensional Sticky Particle System

We present a simple approach for studying the one-dimensional pressureless Euler system via adhesion dynamics in the Wasserstein space $\mathcal{P}_2(\mathbb{R})$ of probability measures with finite quadratic moments. Starting from a discrete system of a finite number of “sticky” particles, we obtain new explicit estimates of the solution in terms of the initial mass and momentum, and we are able to construct an evolution semigroup in a measure-theoretic phase space, allowing mass distributions in $\mathcal{P}_2(\mathbb{R})$ and the corresponding $L^2$-velocity fields. We investigate various interesting properties of this semigroup, in particular its link with the gradient flow of the (opposite) squared Wasserstein distance. Our arguments rely on an equivalent formulation of the evolution as a gradient flow in the convex cone of nondecreasing functions in the Hilbert space $L^2(0,1)$, which corresponds to the Lagrangian system of coordinates given by the canonical monotone rearrangement of the measures.

[1]  Wilfrid Gangbo,et al.  Euler–Poisson Systems as Action-Minimizing Paths in the Wasserstein Space , 2009 .

[2]  WEAK SOLUTIONS AND MAXIMAL REGULARITY FOR , 2006 .

[3]  Y. Brenier,et al.  CONTRACTIVE METRICS FOR SCALAR CONSERVATION LAWS , 2005 .

[4]  François Bouchut,et al.  Equations de transport unidimensionnelles à coefficients discontinus , 1995 .

[5]  Y. Zel’dovich Gravitational instability: An Approximate theory for large density perturbations , 1969 .

[6]  S. Rachev,et al.  Mass transportation problems , 1998 .

[7]  G. Dall'aglio Sugli estremi dei momenti delle funzioni di ripartizione doppia , 1956 .

[8]  Y. Brenier,et al.  Sticky Particles and Scalar Conservation Laws , 1998 .

[9]  B. Perthame Advances in Kinetic Theory and Computing: Selected Papers , 1994, Series on Advances in Mathematics for Applied Sciences.

[10]  Ballistic aggregation in symmetric and nonsymmetric flows , 2006, nlin/0601006.

[11]  E Weinan,et al.  Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics , 1996 .

[12]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[13]  L. Evans,et al.  On Hopf's formulas for solutions of Hamilton-Jacobi equations , 1984 .

[14]  C. Villani Topics in Optimal Transportation , 2003 .

[15]  A. I. Shnirel'man On the principle of the shortest way in the dynamics of systems with constraints , 1986 .

[16]  Gershon Wolansky,et al.  Dynamics of a system of sticking particles of finite size on the line , 2006, math-ph/0609006.

[17]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[18]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[20]  J. Carrillo,et al.  Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws , 2006 .

[21]  Feimin Huang,et al.  Well Posedness for Pressureless Flow , 2001 .

[22]  M. Sever An existence theorem in the large for zero-pressure gas dynamics , 2001, Differential and Integral Equations.

[23]  Y. Brenier L2 Formulation of Multidimensional Scalar Conservation Laws , 2006, math/0609761.

[24]  Riccarda Rossi,et al.  Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces , 2003 .

[25]  Laurent Boudin,et al.  A Solution with Bounded Expansion Rate to the Model of Viscous Pressureless Gases , 2000, SIAM J. Math. Anal..

[26]  Satya N. Atluri Generalized Variational Principles , 1990 .

[27]  Octave Moutsinga Convex hulls, Sticky particle dynamics and Pressure-less gas system , 2008 .

[28]  Ph. A. Martin,et al.  One-dimensional ballistic aggregation: Rigorous long-time estimates , 1994 .

[29]  Adrian Tudorascu,et al.  Pressureless Euler/Euler-Poisson Systems via Adhesion Dynamics and Scalar Conservation Laws , 2008, SIAM J. Math. Anal..

[30]  E. Grenier,et al.  Existence globale pour le système des gaz sans pression , 1995 .