Large half-metallic gaps in the quaternary Heusler alloys CoFeCrZ (Z = Al, Si, Ga, Ge): A first-principles study

Abstract The high Curie temperatures and compatible lattice structure with conventional semiconductors for half-metallic Co 2 FeZ and Co 2 CrZ (Z = Al, Si, Ga, Ge) inspired us to design new quaternary Heusler half-metallic ferromagnets CoFeCrZ. Our first-principles calculations show that, within generalized gradient approximation for the electronic exchange–correlation functional, both CoFeCrGa and CoFeCrGe are nearly half-metals, while both CoFeCrAl and CoFeCrSi exhibit excellent half-metallic ferromagnetism with the large half-metallic gaps of 0.16 and 0.28 eV, respectively. The half-metallicity of CoFeCrAl and CoFeCrSi is robust against the lattice compression (up to 7% and 4%, respectively). We also reveal that the half-metallicity is lost for both CoFeCrAl and CoFeCrGa but retentive for both CoFeCrSi and CoFeCrGe when the Coulomb interactions are considered. In addition, both CoFe- and CrSi-terminated (0 0 1) surfaces with and without antisite defects lose the bulk half-metallicity in CoFeCrSi.

[1]  Nobuki Tezuka,et al.  Improved tunnel magnetoresistance of magnetic tunnel junctions with Heusler Co2FeAl0.5Si0.5 electrodes fabricated by molecular beam epitaxy , 2009 .

[2]  G. Fecher,et al.  Element-specific magnetic moments and spin-resolved density of states in CoFeMnZ (Z = Al, Ga; Si, Ge) , 2011 .

[3]  G. Fecher,et al.  Quaternary half-metallic Heusler ferromagnets for spintronics applications , 2011 .

[4]  G. Gao,et al.  Half-metallic sp-electron ferromagnets in rocksalt structure: The case of SrC and BaC , 2007 .

[5]  Surface properties of the half-and full-Heusler alloys , 2002, cond-mat/0204083.

[6]  Koichiro Inomata,et al.  Giant tunneling magnetoresistance up to 330% at room temperature in sputter deposited Co2FeAl/MgO/CoFe magnetic tunnel junctions , 2009 .

[7]  G. Gao,et al.  Bulk and surface half-metallicity: Metastable zinc-blende TiSb , 2012 .

[8]  G. Gao,et al.  First-principles prediction of half-metallic ferromagnetism in five transition-metal chalcogenides: The case of rocksalt structure , 2012 .

[9]  B. Aktaş,et al.  Erratum: Doping and disorder in the CO2MnAl and Co2MnGa half-metallic Heusler alloys , 2006, cond-mat/0607652.

[10]  N. Papanikolaou,et al.  Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys , 2002 .

[11]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[12]  G. Fecher,et al.  Rational design of new materials for spintronics: Co2FeZ (Z=Al, Ga, Si, Ge) , 2008, Science and technology of advanced materials.

[13]  K.H.J. Buschow,et al.  Magnetic and magneto-optical properties of heusler alloys based on aluminium and gallium , 1981 .

[14]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[15]  P. D. Babu,et al.  Investigation of atomic anti-site disorder and ferrimagnetic order in the half-metallic Heusler alloy Mn2V Ga , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Koichiro Inomata,et al.  Tunnel magnetoresistance in textured Co2FeAl/MgO/CoFe magnetic tunnel junctions on a Si/SiO2 amorphous substrate , 2011 .

[17]  Claudia Felser,et al.  Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment , 2006 .

[18]  Guodong Liu,et al.  New quarternary half metallic material CoFeMnSi , 2009 .

[19]  G. Fecher,et al.  Spintronics: a challenge for materials science and solid-state chemistry. , 2007, Angewandte Chemie.

[20]  A. I. Lichtenstein,et al.  Half-metallic ferromagnets: From band structure to many-body effects , 2007, 0711.0872.

[21]  G. Fecher,et al.  Properties of the quaternary half-metal-type Heusler alloy Co2Mn1-xFexSi , 2006, cond-mat/0606108.

[22]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[23]  G. Fecher,et al.  Understanding the trend in the Curie temperatures of Co2-based Heusler compounds: Ab initio calculations , 2007 .

[24]  Hans‐Uwe Schuster,et al.  Optische Untersuchungen an farbigen Intermetallischen phasen , 1986 .

[25]  K.H.J. Buschow,et al.  New Class of Materials: Half-Metallic Ferromagnets , 1983 .

[26]  A. Sakuma,et al.  Powder neutron diffraction studies for the L21 phase of Co2YGa (Y = Ti, V, Cr, Mn and Fe) Heusler alloys , 2010 .

[27]  N. Tezuka,et al.  Site disorder inCo2Fe(Al,Si)Heusler alloys and its influence on junction tunnel magnetoresistance , 2008 .

[28]  G. Fecher,et al.  Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMnZ (Z = Al, Ga, Si, Ge) , 2011 .

[29]  Claudia Felser,et al.  Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations , 2005 .

[30]  Claudia Felser,et al.  Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds , 2006, cond-mat/0611179.

[31]  Bin Xu,et al.  Surface d0 half-metallicity of rocksalt MgN from first-principles , 2013 .

[32]  N. Tezuka,et al.  175% tunnel magnetoresistance at room temperature and high thermal stability using Co2FeAl0.5Si0.5 full-Heusler alloy electrodes , 2006 .