Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies

Solar cells are considered as one of the prominent sources of renewable energy suitable for large-scale adoption in a carbon-constrained world and can contribute to reduced reliance on energy imports, whilst improving the security of energy supply. A new arrival in the family of solar cells technologies is the organic-inorganic halide perovskite. The major thrust for endorsing these new solar cells pertains to their potential as an economically and environmentally viable option to traditional silicon-based technology. To verify this assertion, this paper presents a critical review of some existing photovoltaic (PV) technologies in comparison with perovskite-structured solar cells (PSCs), including material and performance parameters, production processes and manufacturing complexity, economics, key technological challenges for further developments and current research efforts. At present, there is limited environmental assessment of PSCs and consequently, a methodologically robust and environmentally expansive lifecycle supply chain assessment of two types of PSC modules A and B is also undertaken within the context of other PV technologies, to assess their potential for environmentally friendly innovation in the energy sector. Module A is based on MAPbX3 perovskite structure while module B is based on CsFAPbX3 with improved stability, reproducibility and high performance efficiency. The main outcomes, presented along with sensitivity analysis, show that PSCs offer more environmentally friendly and sustainable option, with the least energy payback period, as compared to other PV technologies. The review and analysis presented provide valuable insight and guidance in identifying pathways and windows of opportunity for future PV designs towards cleaner and sustainable energy production.

[1]  Federica Cucchiella,et al.  Renewable energy options for buildings: Performance evaluations of integrated photovoltaic systems , 2012 .

[2]  D. C. Law,et al.  Direct Semiconductor Bonded 5J Cell for Space and Terrestrial Applications , 2014, IEEE Journal of Photovoltaics.

[3]  E. Alarousu,et al.  Fast Crystallization and Improved Stability of Perovskite Solar Cells with Zn2SnO4 Electron Transporting Layer: Interface Matters. , 2015, ACS applied materials & interfaces.

[4]  S. Koh,et al.  Environmental and economic analysis of building integrated photovoltaic systems in Italian regions , 2015 .

[5]  M. Nazeeruddin,et al.  High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors , 2015 .

[6]  D. Law,et al.  40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .

[7]  Jinli Yang,et al.  Compact layer free perovskite solar cells with 13.5% efficiency. , 2014, Journal of the American Chemical Society.

[8]  D. C. Law,et al.  Solar cell generations over 40% efficiency , 2011 .

[9]  Yongli Gao,et al.  Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer , 2016 .

[10]  Yixin Zhao,et al.  Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. , 2016, Chemical Society reviews.

[11]  V. Ahmadi,et al.  Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells. , 2016, ChemSusChem.

[12]  W. Que,et al.  High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer , 2015 .

[13]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[14]  V. T. Dinh,et al.  Over 35-percent efficient GaAs/GaSb tandem solar cells , 1990 .

[15]  Xizhe Liu,et al.  Spray reaction prepared FA1−xCsxPbI3 solid solution as a light harvester for perovskite solar cells with improved humidity stability , 2016 .

[16]  Adolf Acquaye,et al.  Input-output analysis of Irish construction sector greenhouse gas emissions , 2010 .

[17]  Adolf Acquaye,et al.  Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics , 2016 .

[18]  Prashant V Kamat,et al.  Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good. , 2015, The journal of physical chemistry letters.

[19]  D. Maxwell,et al.  Developing sustainable products and services , 2003 .

[20]  Federica Cucchiella,et al.  End-of-Life of used photovoltaic modules: A financial analysis , 2015 .

[21]  J. Bisquert,et al.  Ionic Reactivity at Contacts and Aging of Methylammonium Lead Triiodide Perovskite Solar Cells , 2016 .

[22]  S. Reichelstein,et al.  The Prospects for Cost Competitive Solar PV Power , 2012 .

[23]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[24]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[25]  Vasilis Fthenakis,et al.  Photovoltaic manufacturing: Present status, future prospects, and research needs , 2011 .

[26]  E. Yablonovitch,et al.  Extreme selectivity in the lift‐off of epitaxial GaAs films , 1987 .

[27]  Adolf Acquaye,et al.  Decarbonising product supply chains: design and development of an integrated evidence-based decision support system – the supply chain environmental analysis tool (SCEnAT) , 2013 .

[28]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[29]  Yong Zhou Eco- and Renewable Energy Materials , 2013 .

[30]  E. Sargent,et al.  Colloidal quantum dot solar cells , 2012, Nature Photonics.

[31]  M. Saidaminov,et al.  Making and Breaking of Lead Halide Perovskites. , 2016, Accounts of chemical research.

[32]  Frederik C. Krebs,et al.  Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes , 2015 .

[33]  W. Lee,et al.  Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability , 2017 .

[34]  Padhraic Mulligan,et al.  Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals , 2016, Nature Photonics.

[35]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[36]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[37]  Gjalt Huppes,et al.  Methods in the Life Cycle Inventory of a Product , 2009 .

[38]  M. Grätzel,et al.  Photovoltaic and Amplified Spontaneous Emission Studies of High‐Quality Formamidinium Lead Bromide Perovskite Films , 2016 .

[39]  Vasilis Fthenakis,et al.  CdTe PV: Real and Perceived EHS Risks , 2003 .

[40]  S. Suh,et al.  Application of hybrid life cycle approaches to emerging energy technologies--the case of wind power in the UK. , 2011, Environmental science & technology.

[41]  Federica Cucchiella,et al.  Recycling of WEEEs: An economic assessment of present and future e-waste streams , 2015 .

[42]  S. Gradečak,et al.  Impacts of Ion Segregation on Local Optical Properties in Mixed Halide Perovskite Films. , 2016, Nano letters.

[43]  The mechanism of toluene-assisted crystallization of organic–inorganic perovskites for highly efficient solar cells , 2016 .

[44]  Frederik C. Krebs,et al.  Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective , 2015 .

[45]  Jinsong Huang,et al.  Electric‐Field‐Driven Reversible Conversion Between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures , 2016 .

[46]  Adolf Acquaye,et al.  Integrating economic considerations with operational and embodied emissions into a decision support system for the optimal ranking of building retrofit options , 2014 .

[47]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[48]  Aslihan Babayigit,et al.  Toxicity of organometal halide perovskite solar cells. , 2016, Nature materials.

[49]  Eman A. Gaml,et al.  Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution. , 2016, Nanoscale.

[50]  Yongli Gao,et al.  Iodine and Chlorine Element Evolution in CH3NH3PbI3–xClx Thin Films for Highly Efficient Planar Heterojunction Perovskite Solar Cells , 2016 .

[51]  Ata Akcil,et al.  Acid Mine Drainage (AMD): causes, treatment and case studies , 2006 .

[52]  J. Bisquert The Swift Surge of Perovskite Photovoltaics , 2013 .

[53]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[54]  Adolf Acquaye,et al.  Benchmarking carbon emissions performance in supply chains , 2014 .

[55]  Jiří Jaromír Klemeš,et al.  A Review of Footprint analysis tools for monitoring impacts on sustainability , 2012 .

[56]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[57]  Dane W. deQuilettes,et al.  The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. , 2015, ACS nano.

[58]  T. Miyasaka,et al.  Impacts of Heterogeneous TiO2 and Al2O3 Composite Mesoporous Scaffold on Formamidinium Lead Trihalide Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[59]  J. J. Loferski,et al.  Efficiency of tandem solar cell systems as a function of temperature and solar energy concentration ratio , 1979 .

[60]  Fengqi You,et al.  Assumptions and the levelized cost of energy for photovoltaics , 2011 .

[61]  Markus Hösel,et al.  OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools , 2013 .

[62]  T. Edvinsson,et al.  Determination of Thermal Expansion Coefficients and Locating the Temperature-Induced Phase Transition in Methylammonium Lead Perovskites Using X-ray Diffraction. , 2015, Inorganic chemistry.

[63]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[64]  Adolf Acquaye,et al.  How do end of life scenarios influence the environmental impact of product supply chains? comparing biomaterial and petrochemical products , 2012 .

[65]  R. García‐Valverde,et al.  Life cycle analysis of organic photovoltaic technologies , 2010 .

[66]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[67]  Aslihan Babayigit,et al.  Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio , 2016, Scientific Reports.

[68]  Jing Wei,et al.  Reversible Healing Effect of Water Molecules on Fully Crystallized Metal–Halide Perovskite Film , 2016 .

[69]  Shelby L. Hatch,et al.  Introducing Perovskite Solar Cells to Undergraduates. , 2015, The journal of physical chemistry letters.

[70]  P. Kamat Evolution of Perovskite Photovoltaics and Decrease in Energy Payback Time , 2013 .

[71]  Ki-Hoon Lee,et al.  Integrating carbon footprint into supply chain management: the case of Hyundai Motor Company (HMC) in the automobile industry , 2011 .

[72]  Gjalt Huppes,et al.  Toward an Information Tool for Integrated Product Policy: Requirements for Data and Computation , 2006 .

[73]  M. Ersoz,et al.  Solvent washing with toluene enhances efficiency and increases reproducibility in perovskite solar cells , 2016 .

[74]  Konrad Hungerbühler,et al.  Production of fine and speciality chemicals: procedure for the estimation of LCIs , 2004 .

[75]  Callie W. Babbitt,et al.  Life-cycle assessment of organic solar cell technologies , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[76]  E. Alarousu,et al.  Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. , 2016, Nanoscale.

[77]  Adolf Acquaye,et al.  Biofuels and their potential to aid the UK towards achieving emissions reduction policy targets , 2012 .

[78]  Stephen J. Skinner,et al.  Functional materials for sustainable energy applications , 2012 .

[79]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[80]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[81]  Trevor Pryor,et al.  Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems , 2007 .

[82]  Shiliang Zhou,et al.  Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. , 2014, Chemical communications.

[83]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[84]  N. Park,et al.  Impact of Selective Contacts on Long-Term Stability of CH3NH3PbI3 Perovskite Solar Cells , 2016 .

[85]  Yongqi Dong,et al.  Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment , 2016, Scientific Reports.

[86]  S. Chand,et al.  Copper thiocyanate (CuSCN): an efficient solution-processable hole transporting layer in organic solar cells , 2015 .

[87]  A. Hoekstra,et al.  Humanity’s unsustainable environmental footprint , 2014, Science.

[88]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[89]  Frederik C. Krebs,et al.  Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing , 2012 .

[90]  R. Margolis,et al.  A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs , 2013 .

[91]  A. Jen,et al.  Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells , 2016 .

[92]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[93]  Manfred Lenzen,et al.  Truncation error in embodied energy analyses of basic iron and steel products , 2000 .

[94]  Supratik Guha,et al.  Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .

[95]  A. Belcher,et al.  Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries , 2014 .

[96]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[97]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[98]  Juan Bisquert,et al.  General working principles of CH3NH3PbX3 perovskite solar cells. , 2014, Nano letters.

[99]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[100]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[101]  P. Selvaraj,et al.  High efficiency CSS CdTe solar cells , 2000 .

[102]  Nam-Gyu Park,et al.  Organolead Halide Perovskite: New Horizons in Solar Cell Research , 2014 .

[103]  Tsutomu Miyasaka,et al.  Steady state performance, photo-induced performance degradation and their relation to transient hysteresis in perovskite solar cells , 2016 .

[104]  L. Giribabu,et al.  Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells. , 2017, Chemical record.

[105]  Wai Kin Chan,et al.  Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance? , 2016 .

[106]  O. Prezhdo,et al.  Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation. , 2016, Journal of the American Chemical Society.

[107]  Manfred Lenzen,et al.  Development of an embedded carbon emissions indicator: Producing a time series of input-output tables and embedded carbon dioxide emissions for the UK by using a MRIO data optimisation system , 2008 .

[108]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[109]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[110]  K. Hynes,et al.  Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues , 2005 .

[111]  Yoshiharu Sato,et al.  Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process. , 2016, The journal of physical chemistry letters.

[112]  Martin A. Green,et al.  Beneficial Effects of PbI2 Incorporated in Organo‐Lead Halide Perovskite Solar Cells , 2016 .

[113]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[114]  Shenghao Wang,et al.  Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method , 2014 .

[115]  M. Li,et al.  A room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells , 2016 .

[116]  U. Bach,et al.  Parameters responsible for the degradation of CH3NH3PbI3-based solar cells on polymer substrates , 2016 .

[117]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[118]  M. Saidaminov,et al.  Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications , 2016 .

[119]  Shibin Li,et al.  Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods , 2017 .

[120]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[121]  Markus Hösel,et al.  Development of Lab‐to‐Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells , 2015 .

[122]  Yixin Zhao,et al.  Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[123]  Nam-Gyu Park,et al.  Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. , 2016, Accounts of chemical research.

[124]  John Barrett,et al.  Identification of 'carbon hot-spots' and quantification of GHG intensities in the biodiesel supply chain using hybrid LCA and structural path analysis. , 2011, Environmental science & technology.

[125]  T. Anthopoulos,et al.  Copper(I) thiocyanate (CuSCN) as a hole-transport material for large-area opto/electronics , 2015 .

[126]  Christopher J. Tassone,et al.  Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells , 2014 .

[127]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[128]  David Pennington,et al.  Recent developments in Life Cycle Assessment. , 2009, Journal of environmental management.

[129]  Martin A. Green,et al.  Crystalline and thin-film silicon solar cells: state of the art and future potential , 2003 .

[130]  V. Ahmadi,et al.  Two-Step Physical Deposition of a Compact CuI Hole-Transport Layer and the Formation of an Interfacial Species in Perovskite Solar Cells. , 2016, ChemSusChem.

[131]  Shijun Jia,et al.  Large-area organic photovoltaic module—Fabrication and performance , 2009 .

[132]  Robert L. Jaffe,et al.  Pathways for solar photovoltaics , 2015 .

[133]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[134]  Feng Yan,et al.  Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes , 2015, Advanced materials.

[135]  Jan C. Hummelen,et al.  Perovskites under the Sun , 2013, Nature Materials.

[136]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[137]  B. Saunders,et al.  Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells , 2014 .

[138]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[139]  M. Nazeeruddin,et al.  Charge Transfer Dynamics from Organometal Halide Perovskite to Polymeric Hole Transport Materials in Hybrid Solar Cells. , 2015, The journal of physical chemistry letters.

[140]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[141]  Steffen Meyer,et al.  Copper(I) Iodide as Hole‐Conductor in Planar Perovskite Solar Cells: Probing the Origin of J–V Hysteresis , 2015 .

[142]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[143]  Biwu Ma,et al.  Bright Light‐Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets , 2016, Advanced materials.

[144]  Heping Shen,et al.  Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[145]  S. C. L. Koh,et al.  Drivers of U.S. toxicological footprints trajectory 1998–2013 , 2016, Scientific Reports.

[146]  Rui Xia,et al.  Credible evidence for the passivation effect of remnant PbI₂ in CH₃NHCH₃PbICH₃ films in improving the performance of perovskite solar cells. , 2016, Nanoscale.

[147]  Maria-Eleni Ragoussi,et al.  New generation solar cells: concepts, trends and perspectives. , 2015, Chemical communications.

[148]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[149]  S. Hellweg,et al.  Emerging approaches, challenges and opportunities in life cycle assessment , 2014, Science.

[150]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[151]  Shangfeng Yang,et al.  Kesterite Cu2ZnSnS4 as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[152]  M. Grätzel,et al.  Lead-Free MA2CuCl(x)Br(4-x) Hybrid Perovskites. , 2016, Inorganic chemistry.

[153]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[154]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[155]  Henry J. Snaith,et al.  The perils of solar cell efficiency measurements , 2012, Nature Photonics.

[156]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[157]  David Worsley,et al.  A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells , 2014, Advanced materials.

[158]  M. A. Malik,et al.  Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. , 2012, Chemical communications.

[159]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016 .

[160]  Martin Kumar Patel,et al.  Ex‐ante environmental and economic evaluation of polymer photovoltaics , 2009 .

[161]  Yongfang Li,et al.  Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites , 2015 .

[162]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[163]  E. Carter,et al.  Three-dimensional hole transport in nickel oxide by alloying with MgO or ZnO , 2015 .

[164]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[165]  Jolita Kruopienė,et al.  Life Cycle Assessment in environmental impact assessments of industrial projects: towards the improvement , 2015 .

[166]  Daniel Derkacs,et al.  Using Dilute Nitrides to Achieve Record Solar Cell Efficiencies , 2013 .

[167]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[168]  Anders S. G. Andrae,et al.  Life Cycle Assessment of electronics , 2014, 2014 IEEE Conference on Technologies for Sustainability (SusTech).

[169]  Arif D. Sheikh,et al.  Ambipolar solution-processed hybrid perovskite phototransistors , 2015, Nature Communications.

[170]  Liyuan Han,et al.  Colloidal quantum dot solar cells , 2011 .

[171]  Adisa Azapagic,et al.  Options for broadening and deepening the LCA approaches , 2010 .

[172]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[173]  Tayfun Gokmen,et al.  Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se,S)4 solar cell , 2012 .

[174]  Robert Miles,et al.  Photovoltaic solar cells: Choice of materials and production methods , 2006 .

[175]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[176]  Maria Laura Parisi,et al.  The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach , 2014 .

[177]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[178]  Adolf Acquaye,et al.  Operational vs. embodied emissions in buildings—A review of current trends , 2013 .

[179]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[180]  T. Dhakal,et al.  Thin Film Solar Cells Using Earth-Abundant Materials , 2013 .