Multiscale cloud system modeling

[1] The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing ∼1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

[1]  R. Houze,et al.  Dual-Doppler Radar Analysis of a Midlatitude Squall Line with a Trailing Region of Stratiform Rain. , 1987 .

[2]  Harshvardhan,et al.  Diurnal Variability of the Hydrologic Cycle in a General Circulation Model , 1991 .

[3]  E. Berry,et al.  Cloud Droplet Growth by Collection , 1967 .

[4]  T. Lane,et al.  Convectively Generated Gravity Waves and Their Effect on the Cloud Environment , 2001 .

[5]  Roger A. Pielke,et al.  Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study , 2006 .

[6]  W. Frank,et al.  Radiative forcing of simulated tropical cloud clusters , 1993 .

[7]  Yinon Rudich,et al.  Desert dust suppressing precipitation: A possible desertification feedback loop , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  William R. Cotton,et al.  The Sensitivity of a Simulated Extratropical Mesoscale Convective System to Longwave Radiation and Ice-Phase Microphysics , 1988 .

[9]  A. Majda,et al.  Meridional Momentum Flux and Superrotation in the Multiscale IPESD MJO Model , 2007 .

[10]  A Study of the Response of Deep Tropical Clouds to Large-Scale Thermodynamic Forcings. Part I: Modeling Strategies and Simulations of TOGA COARE Convective Systems , 2002 .

[11]  W. Tao,et al.  The Sensitivity of Tropical Squall Lines (GATE and TOGA COARE) to Surface Fluxes: Cloud Resolving Model Simulations , 1999 .

[12]  A. Pokrovsky,et al.  Factors Determining the Impact of Aerosols on Surface Precipitation from Clouds: An Attempt at Classification , 2008 .

[13]  J. Warner,et al.  A Reduction in Rainfall Associated with Smoke from Sugar-Cane Fires--An Inadvertent Weather Modification?. , 1968 .

[14]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[15]  K. D. Beheng,et al.  A double-moment parameterization for simulating autoconversion, accretion and selfcollection , 2001 .

[16]  Jen‐Ping Chen,et al.  Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part I: Description of the microphysical model , 1994 .

[17]  C. Sui,et al.  Mechanisms of Cloud-radiation interaction in the tropics and midlatitudes , 1996 .

[18]  M. Moncrieff,et al.  Convection Initiation by Density Currents: Role of Convergence, Shear, and Dynamical Organization , 1999 .

[19]  T. Benjamin Gravity currents and related phenomena , 1968, Journal of Fluid Mechanics.

[20]  Ziad S. Haddad,et al.  Retrieval of Latent Heating from TRMM Measurements , 2006 .

[21]  T. Krishnamurti,et al.  An Empirical Cumulus Parameterization Scheme for a Global Spectral Model , 2004 .

[22]  T. Matsui,et al.  Role of atmospheric aerosol concentration on deep convective precipitation: Cloud‐resolving model simulations , 2007 .

[23]  T. Bell,et al.  Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms , 2008 .

[24]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[25]  Xiaoqing Wu,et al.  Long-Term Behavior of Cloud Systems in TOGA COARE and Their Interactions with Radiative and Surface Processes. Part I: Two-Dimensional Modeling Study , 1998 .

[26]  R. Rasmussen,et al.  Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model , 1998 .

[27]  S. Kreidenweis,et al.  Does cloud processing of aerosol enhance droplet concentrations , 2000 .

[28]  Hiroaki Miura,et al.  Development of a global cloud resolving model - a multi-scale structure of tropical convections - , 2005 .

[29]  Shuyi S. Chen,et al.  A Numerical Case Study on the Initiation of the Madden–Julian Oscillation , 2008 .

[30]  F. Marzano,et al.  Use of cloud model microphysics for passive microwave-based precipitation retrieval : Significance of consistency between model and measurement manifolds , 1998 .

[31]  J. Michael Fritsch,et al.  The global population of mesoscale convective complexes , 1997 .

[32]  Hiroaki Miura,et al.  A climate sensitivity test using a global cloud resolving model under an aqua planet condition , 2005 .

[33]  C. Snyder,et al.  A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses , 2009 .

[34]  Joanne Simpson,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations , 1995 .

[35]  W. Cotton,et al.  Aerosol pollution impact on precipitation : a scientific review , 2009 .

[36]  Robert B. Wilhelmson,et al.  A Numerical Study of Storm Splitting that Leads to Long-Lived Storms , 1978 .

[37]  M. Moncrieff Momentum Transport by Organized Convection , 1997 .

[38]  W. Grabowski,et al.  Large‐scale organization of tropical convection in two‐dimensional explicit numerical simulations: Effects of interactive radiation , 2002 .

[39]  E. Kessler On the distribution and continuity of water substance in atmospheric circulations , 1969 .

[40]  M. Moncrieff,et al.  A Numerical Study of the Diurnal Cycle of Tropical Oceanic Convection , 1998 .

[41]  W. Hall,et al.  A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part I: The Redistribution of Aerosol Particles Captured through Nucleation and Impaction Scavenging by Growing Cloud Drops , 1985 .

[42]  Jay E. Steele,et al.  Convective Clouds , 2007, NPH.

[43]  William R. Cotton,et al.  Large-Eddy Simulations of the 26 November 1991 FIRE II Cirrus Case , 2001 .

[44]  W. Tao,et al.  Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods , 2001 .

[45]  Joanne Simpson,et al.  Comparison of Ice-Phase Microphysical Parameterization Schemes Using Numerical Simulations of Tropical Convection , 1991 .

[46]  W. Tao,et al.  Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part II: Cloud Microphysics and Storm Dynamics Interactions , 2009 .

[47]  Steven K. Krueger,et al.  Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer , 1988 .

[48]  Rosenfeld,et al.  Suppression of rain and snow by urban and industrial air pollution , 2000, Science.

[49]  G. Bryan,et al.  Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation , 2006 .

[50]  Chung-Lin Shie,et al.  Spectral Retrieval of Latent Heating Profiles from TRMM PR Data. Part III: Estimating Apparent Moisture Sink Profiles over Tropical Oceans , 2008 .

[51]  W. Tao,et al.  An Overview of the Field Experiment "Winter Mesoscale Convective Systems (MCSs) over the Japan Sea in 2001", and Comparisons of the Cold-air Outbreak Case (14 January) between Analysis and a Non-hydrostatic Cloud-resolving Model , 2004 .

[52]  Robert F. Adler,et al.  On the Tropical Rainfall Measuring Mission (TRMM) , 1996 .

[53]  Yonghua Chen,et al.  The Tropical Atmospheric El Niño Signal in Satellite Precipitation Data and a Global Climate Model , 2007 .

[54]  B. Stevens,et al.  Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model , 2000 .

[55]  Kensuke Nakajima,et al.  Numerical Experiments Concerning the Origin of Cloud Clusters in the Tropical Atmosphere , 1988 .

[56]  Robert F. Adler,et al.  A Proposed Tropical Rainfall Measuring Mission (TRMM) Satellite , 1988 .

[57]  Eric A. Smith,et al.  Moisture Budget Analysis of TOGA COARE Area Using SSM/I-Retrieved Latent Heating and Large-Scale Q2 Estimates , 1999 .

[58]  M. Moncrieff,et al.  The dynamics and simulation of tropical cumulonimbus and squall lines , 1976 .

[59]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[60]  Effects of Convectively Generated Gravity Waves and Rotation on the Organization of Convection , 2004 .

[61]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part III. Accretion and Self-collection , 1974 .

[62]  Robert B. Wilhelmson The Life Cycle of a Thunderstorm in Three Dimensions , 1974 .

[63]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[64]  Edwin Kessler,et al.  On the continuity and distribution of water substance in atmospheric circulations , 1995 .

[65]  Chung-Lin Shie,et al.  Parallelization of the NASA Goddard Cumulus Ensemble Model for Massively Parallel Computing , 2007 .

[66]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part I. Double Distributions , 1974 .

[67]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[68]  V. Ramanathan,et al.  Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño , 1991, Nature.

[69]  Tsutomu Takahashi Hail in an Axisymmetric Cloud Model , 1976 .

[70]  E. F. Bradley,et al.  Bulk parameterization of air‐sea fluxes for Tropical Ocean‐Global Atmosphere Coupled‐Ocean Atmosphere Response Experiment , 1996 .

[71]  Mitchell W. Moncrieff,et al.  Organized convective systems : archetypal dynamical models, mass and momentum flux theory, and parametrization , 1992 .

[72]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[73]  Mitchell W. Moncrieff,et al.  Representing convective organization in prediction models by a hybrid strategy , 2006 .

[74]  Eric A. Smith,et al.  Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products for February 1998 , 2000 .

[75]  R. Houze,et al.  The Tropical Dynamical Response to Latent Heating Estimates Derived from the TRMM Precipitation Radar , 2004 .

[76]  G. Kiladis,et al.  Dynamics of 2-Day Equatorial Waves , 2004 .

[77]  C. Medaglia,et al.  A Numerical Study , 2005 .

[78]  K. D. Beheng A parameterization of warm cloud microphysical conversion processes , 1994 .

[79]  Kazuo Saito,et al.  The Operational JMA Nonhydrostatic Mesoscale Model , 2006 .

[80]  W. Cotton,et al.  Numerical Study of an Observed Orogenic Mesoscale Convective System. Part 2: Analysis of Governing Dynamics , 1989 .

[81]  T. L. Wolfe,et al.  An assessment of the impact of pollution on global cloud albedo , 1984 .

[82]  Terry L. Clark,et al.  Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations , 1979 .

[83]  M. Moncrieff A theory of organized steady convection and its transport properties , 2007 .

[84]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[85]  A. Pokrovsky,et al.  Aerosol impact on the dynamics and microphysics of deep convective clouds , 2005 .

[86]  Xiaofan Li,et al.  Cloud-Resolving Modeling of Convective Processes , 2008 .

[87]  B. Barkstrom,et al.  Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment , 1989, Science.

[88]  Mitchell W. Moncrieff,et al.  Two‐dimensional convection in non‐constant shear: A model of mid‐latitude squall lines , 1982 .

[89]  Jeffrey A. Jones,et al.  A Hybrid Surface Reference Technique and Its Application to the TRMM Precipitation Radar , 2004 .

[90]  Sensitivity of a simulated tropical squall line to long‐wave radiation , 1997 .

[91]  William R. Cotton,et al.  Cumulus Convection in Shear Flow—Three-Dimensional Numerical Experiments , 1978 .

[92]  E. F. Bradley,et al.  Measurements of sensible and latent heat flux in the western equatorial Pacific Ocean , 1991 .

[93]  Graham Feingold,et al.  Analysis of the Influence of Film-Forming Compounds on Droplet Growth: Implications for Cloud Microphysical Processes and Climate , 2002 .

[94]  E. A. Smith,et al.  Design of an inversion-based precipitation proflie retrieval algorithm using an explicit cloud model for initial guess microphysics , 1994 .

[95]  Robert B. Wilhelmson,et al.  Simulations of Right- and Left-Moving Storms Produced Through Storm Splitting , 1978 .

[96]  Minghua Zhang,et al.  Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data , 2007 .

[97]  Andreas Bott,et al.  A Radiation Fog Model with a Detailed Treatment of the Interaction between Radiative Transfer and Fog Microphysics , 1990 .

[98]  Robert Wood,et al.  Radiative and Convective Driving of Tropical High Clouds , 2007 .

[99]  J. Curry,et al.  CONFRONTING MODELS WITH DATA , 2003 .

[100]  S. Twomey,et al.  The Production of Cloud Nuclei by Cane Fires and the Effect on Cloud Droplet Concentration , 1967 .

[101]  G. J. Shutts,et al.  Convective Forcing Fluctuations in a Cloud-Resolving Model: Relevance to the Stochastic Parameterization Problem , 2007 .

[102]  M. Moncrieff,et al.  Dynamical models of two‐dimensional downdraughts , 1980 .

[103]  Shoichi Shige,et al.  Analysis of rainfall characteristics of the Madden–Julian oscillation using TRMM satellite data , 2006 .

[104]  Robert G. Fovell,et al.  Numerical Simulation of a Midlatitude Squall Line in Two Dimensions , 1988 .

[105]  Eric A. Smith,et al.  Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part II: Evaluation of Estimates Using Independent Data , 2006 .

[106]  Z. Levin,et al.  The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model , 2005 .

[107]  W. M. Levitt,et al.  EFFECTS OF RADIATION , 1958, Lancet.

[108]  A. Flossmann,et al.  A numerical study of the effects of the aerosol particle spectrum on the development of the ice phase and precipitation formation , 2006 .

[109]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[110]  Wei-Kuo Tao,et al.  A Study of the Response of Deep Tropical Clouds to Mesoscale Processes: Three-Dimensional Numerical Experiments , 1986 .

[111]  D. Churchill,et al.  Effects of Radiation and Turbulence on the Diabatic Heating and Water Budget of the Stratiform Region of a Tropical Cloud Cluster , 1991 .

[112]  A. Betts,et al.  Contrasting convective regimes over the Amazon: Implications for cloud electrification , 2002 .

[113]  Mark Pinsky,et al.  Notes on the state-of-the-art numerical modeling of cloud microphysics , 2000 .

[114]  T. Iguchi,et al.  6 . 3 RETRIEVAL OF LATENT HEATING PROFILES FROM TRMM RADAR DATA , 2022 .

[115]  J. Dudhia Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model , 1989 .

[116]  M. Moncrieff,et al.  Year of Tropical Convection (YOTC) , 2009 .

[117]  William R. Cotton,et al.  A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module Descriptions and Supercell Test Simulations , 2004 .

[118]  C. Sui,et al.  Heating, Moisture, and Water Budgets of Tropical and Midlatitude Squall Lines: Comparisons and Sensitivity to Longwave Radiation , 1993 .

[119]  W. Cotton,et al.  The Relationship between Drop In-Cloud Residence Time and Drizzle Production in Numerically Simulated Stratocumulus Clouds , 1996 .

[120]  Christian Kummerow,et al.  A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors , 1996, IEEE Trans. Geosci. Remote. Sens..

[121]  Margaret A. LeMone,et al.  Momentum and Mass Transport by Convective Bands: Comparisons of Highly Idealized Dynamical Models to Observations. , 1994 .

[122]  M. Moncrieff The dynamical structure of two‐dimensional steady convection in constant vertical shear , 1978 .

[123]  Jean-Luc Redelsperger,et al.  A three-dimensional simulation of a tropical squall line: convective organization and thermodynamic vertical transport , 1988 .

[124]  W. M. Gray,et al.  Diurnal Variation of Deep Cumulus Convection , 1977 .

[125]  Wojciech W. Grabowski,et al.  Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension , 1998 .

[126]  W. Tao,et al.  Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part I: Comparisons , 2009 .

[127]  Itamar M. Lensky,et al.  Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds , 1998 .

[128]  J. Slingo,et al.  Coarse-Resolution Models Only Partly Cloudy , 2008, Science.

[129]  Richard H. Johnson,et al.  Trimodal Characteristics of Tropical Convection , 1999 .

[130]  W. Tao,et al.  The Effect of Melting Processes on the Development of a Tropical and a Midlatitude Squall Line , 1995 .

[131]  Daniel Rosenfeld,et al.  Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities , 2003 .

[132]  Philip J. Rasch,et al.  Tropical Intraseasonal Variability in 14 IPCC AR4 Climate Models. Part I: Convective Signals , 2006 .

[133]  Joanne Simpson,et al.  Statistical properties of a cloud ensemble - A numerical study , 1987 .

[134]  W. Cotton,et al.  Impacts of nucleating aerosol on anvil-cirrus clouds : A modeling study , 2007 .

[135]  R. Adler,et al.  Intercomparison of global precipitation products : The third Precipitation Intercomparison Project (PIP-3) , 2001 .

[136]  Alexander Khain,et al.  Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model , 2003 .

[137]  P. R. Julian,et al.  Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period , 1972 .

[138]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[139]  Alfred T. C. Chang,et al.  Retrieval of Monthly Rainfall Indices from Microwave Radiometric Measurements Using Probability Distribution Functions , 1991 .

[140]  Mitchell W. Moncrieff,et al.  The propagation and transfer properties of steady convective overturning in shear , 1972 .

[141]  K. Emanuel,et al.  Hierarchical Tropical Cloud Systems in an Analog Shallow-Water Model. , 1995 .

[142]  Robert E. Schlesinger,et al.  A Three-Dimensional Numerical Model of an Isolated Thunderstorm: Part I. Comparative Experiments for Variable Ambient Wind Shear , 1978 .

[143]  M. Murakami,et al.  Numerical Modeling of Dynamical and Microphysical Evolution of an Isolated Convective Cloud , 1990 .

[144]  P. Webster,et al.  TOGA COARE: The Coupled Ocean-Atmosphere Response Experiment. , 1992 .

[145]  S. Rutledge,et al.  The Oklahoma-Kansas mesoscale convective system of 10-11 June 1985: precipitation structure and single-Doppler radar analysis , 1988 .

[146]  Ka-Ming Lau,et al.  The Tropical Water and Energy Cycles in a Cumulus Ensemble Model. Part I: Equilibrium Climate , 1994 .

[147]  William R. Cotton,et al.  A Binned Approach to Cloud-Droplet Riming Implemented in a Bulk Microphysics Model , 2008 .

[148]  J. Redelsperger,et al.  Three-Dimensional Simulation of a Convective Storm: Sensitivity Studies on Subgrid Parameterization and Spatial Resolution , 1986 .

[149]  G. Kiladis,et al.  Observations of a Convectively Coupled Kelvin Wave in the Eastern Pacific ITCZ , 2002 .

[150]  Patrick T. Haertel,et al.  Convectively coupled equatorial waves , 2009 .

[151]  K. Lau,et al.  An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature , 1994 .

[152]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[153]  D. Randall,et al.  A Multi-scale Modeling System: Developments, Applications and Critical Issues , 2007 .

[154]  Joanne Simpson,et al.  Numerical Simulation of a Subtropical Squall Line over the Taiwan Strait , 1991 .

[155]  Christian D. Kummerow,et al.  A self-consistency approach to improve microwave rainfall rate estimation from space , 1989 .

[156]  Terry L. Clark Numerical Modeling of the Dynamics and Microphysics of Warm Cumulus Convection , 1973 .

[157]  W. Grabowski,et al.  Large‐scale organization of tropical convection in two‐dimensional explicit numerical simulations , 2001 .

[158]  R. Carbone A Severe Frontal Rainband. Part I. Stormwide Hydrodynamic Structure , 1982 .

[159]  William R. Cotton,et al.  Cloud venting — A review and some new global annual estimates , 1995 .

[160]  R. Houze Mesoscale convective systems , 2004 .

[161]  H. Tomita,et al.  A global cloud‐resolving simulation: Preliminary results from an aqua planet experiment , 2005 .

[162]  S. Soong Numerical Simulation of Warm Rain Development in an Axisymmetric Cloud Model , 1974 .

[163]  S. K. Cox,et al.  Estimates of Radiative Divergence during Phase III of the GARP Atlantic Tropical Experiment Part I. Methodology , 1979 .

[164]  Motohki Ikawa,et al.  Comparison of Some Schemes for Nonhydrostatic Models with Orography , 1988 .

[165]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[166]  Juanzhen Sun,et al.  Convective‐scale assimilation of radar data: progress and challenges , 2005 .

[167]  G. Stephens The Influence of Radiative Transfer on the Mass and Heat Budgets of Ice Crystals Failing in the Atmosphere , 1983 .

[168]  Piotr K. Smolarkiewicz,et al.  CRCP: a cloud resolving convection parameterization for modeling the tropical convecting atmosphere , 1999 .

[169]  Xiaoqing Wu,et al.  Collective Effects of Organized Convection and Their Approximation in General Circulation Models , 1996 .

[170]  W. Tao,et al.  GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating Convective Cloud Systems , 1997 .

[171]  M. Moncrieff Analytic representation of the large-scale organization of tropical convection , 2004 .

[172]  P. Bauer,et al.  Model Rain and Clouds over Oceans: Comparison with SSM/I Observations , 2003 .

[173]  Jimy Dudhia,et al.  Spectral (Bin) Microphysics Coupled with a Mesoscale Model (MM5). Part II: Simulation of a CaPE Rain Event with a Squall Line , 2005 .

[174]  Peter V. Hobbs,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands , 1984 .

[175]  Juanzhen Sun,et al.  Multiple-Radar Data Assimilation and Short-Range Quantitative Precipitation Forecasting of a Squall Line Observed during IHOP_2002 , 2007 .

[176]  William L. Woodley,et al.  Deep convective clouds with sustained supercooled liquid water down to -37.5 °C , 2000, Nature.

[177]  Edward J. Zipser,et al.  Mesoscale and convective-scale downdrafts as distinct components of squall-line structure , 1977 .

[178]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[179]  M. Yoshizaki Numerical Simulations of Tropical Squall-line Clusters: Two-dimensional Model , 1986 .

[180]  Wei-Kuo Tao,et al.  A Parameterization for the Triggering of Landscape-Generated Moist Convection. Part I: Analysis of High-Resolution Model Results , 2001 .

[181]  Louis J. Wicker,et al.  Wind and Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman Filter Experiments , 2004 .

[182]  William S. Olson,et al.  Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar–Radiometer Retrievals , 2006 .

[183]  K. Lau,et al.  Origin of Low-Frequency (Intraseasonal) Oscilliations in the Tropical Atmosphere. Part II: Structure and Propagation of Mobile Wave-CISK Modes and Their Modification by Lower Boundary Forcings. , 1989 .

[184]  M. E. Nicholls A Comparison of the Results of a Two-Dimensional Numerical Simulation of a Tropical Squall Line with Observations , 1987 .

[185]  John B. Cunning,et al.  The Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central , 1986 .

[186]  A. Gassmann,et al.  Towards a new hybrid cumulus parametrization scheme for use in non‐hydrostatic weather prediction models , 2007 .

[187]  R. Simpson,et al.  Experimental cumulus dynamics. , 1965 .

[188]  R. Houze,et al.  Kinematics and Microphysics of the Transition Zone of the 10–11 June 1985 Squall Line , 1993 .

[189]  D. Randall,et al.  Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model , 2007 .

[190]  Kazuo Saito,et al.  Numerical Modeling of the Convective Snow Cloud over the Sea of Japan: Precipitation Mechanism and S , 1991 .

[191]  E. Zipser The Role of Organized Unsaturated Convective Downdrafts in the Structure and Rapid Decay of an Equatorial Disturbance , 1969 .

[192]  Shoichi Shige,et al.  Spectral Retrieval of Latent Heating Profiles from TRMM PR Data. Part I: Development of a Model-Based Algorithm , 2004 .

[193]  Kuan-Man Xu,et al.  Simulation of shallow cumuli and their transition to deep convective clouds by cloud‐resolving models with different third‐order turbulence closures , 2006 .

[194]  W. Skamarock Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra , 2004 .

[195]  The Use of Cloud-Resolving Simulations of Mesoscale Convective Systems to Build a Mesoscale Parameterization Scheme , 1998 .

[196]  Terry L. Clark On Modelling Nucleation and Condensation Theory in Eulerian Spatial Domain , 1974 .

[197]  A. Robert,et al.  Cloud Clusters and Large-Scale Vertical Motions in the Tropics , 1982 .

[198]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[199]  W. Grabowski,et al.  Explicit Convection over the Western Pacific Warm Pool in the Community Atmospheric Model , 2005 .

[200]  E. Richard,et al.  The Numerical Simulation of Clouds, Rains and Airflow over the Vosges and Black Forest Mountains: A Meso-β Model with Parameterized Microphysics , 1986 .

[201]  Y. Ogura,et al.  Response of Tradewind Cumuli to Large-Scale Processes , 1980 .

[202]  W. Tao,et al.  The sensitivity of tropical squall lines to surface fluxes: Three‐dimensional cloud‐resolving model simulations , 2003 .

[203]  William S. Olson,et al.  Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part I: Improved Method and Uncertainties , 2006 .

[204]  B. Stevens,et al.  Simulations of marine stratocumulus using a new microphysical parameterization scheme , 1998 .

[205]  Wei‐Chyung Wang,et al.  A modelling study of aerosol impacts on cloud microphysics and radiative properties , 2007 .

[206]  W. Tao,et al.  Response of Deep Tropical Cumulus Clouds to Mesoscale Processes , 1980 .

[207]  H. Chin The impact of the ice phase and radiation on a midlatitude squall line system , 1994 .

[208]  K. Lau,et al.  Genesis and Evolution of Hierarchical Cloud Clusters in a Two-Dimensional Cumulus-Resolving Model , 2001 .

[209]  Yoshimitsu Ogura,et al.  A Comparison Between Axisymmetric and Slab-Symmetric Cumulus Cloud Models , 1973 .

[210]  Y. Kaufman,et al.  Aerosol invigoration and restructuring of Atlantic convective clouds , 2005 .

[211]  R. P. Pearce,et al.  A three‐dimensional primitive equation model of cumulonimbus convection , 1974 .

[212]  Robert A. Houze,et al.  Structure and Dynamics of a Tropical Squall–Line System , 1977 .

[213]  W. Grabowski Coupling Cloud Processes with the Large-Scale Dynamics Using the Cloud-Resolving Convection Parameterization (CRCP) , 2001 .

[214]  E. B. Kraus,et al.  The Diurnal Precipitation Change over the Sea , 1963 .

[215]  David A. Randall,et al.  High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land , 2006 .

[216]  A. Pokrovsky,et al.  Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II : Sensitivity study , 2004 .

[217]  A. Flossmann,et al.  A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part V: The Uptake, Redistribution, and Deposition of (NM4)4SO4 by a Convective Cloud Containing Ice , 1995 .

[218]  W. Tao,et al.  A Study of Landscape-Generated Deep Moist Convection , 1998 .

[219]  Q. Fu,et al.  Tropical Convection and the Energy Balance at the Top of the Atmosphere , 2001 .

[220]  T. Clark,et al.  A Cloud Physical Parameterization Method Using Movable Basis Functions: Stochastic Coalescence Parcel Calculations , 1983 .

[221]  Robert F. Adler,et al.  Retrieval Algorithms for Estimating the Vertical Profiles of Latent Heat Release: Their Applications for TRMM@@@TRMMへの応用 , 1993 .

[222]  Tetsuo Nakazawa,et al.  Tropical Super Clusters within Intraseasonal Variations over the Western Pacific , 1988 .

[223]  Arthur Y. Hou,et al.  Assimilation of Precipitation Information Using Column Model Physics as a Weak Constraint , 2007 .

[224]  Chien Wang A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics , 2005 .

[225]  D. Randall,et al.  Simulations of the Atmospheric General Circulation Using a Cloud-Resolving Model as a Superparameterization of Physical Processes , 2005 .

[226]  M. Moncrieff,et al.  A hydrodynamical theory of conservative bounded density currents , 1989, Journal of Fluid Mechanics.

[227]  Q. Fu,et al.  Interactions of Radiation and Convection in Simulated Tropical Cloud Clusters , 1995 .

[228]  S. K. Cox,et al.  Estimates of Radiative Divergence during Phase III of the GARP Atlantic Tropical Experiment: Part II. Analysis of Phase III Results , 1979 .

[229]  R. Pielke,et al.  Thermally Forced Gravity Waves in an Atmosphere at Rest , 1991 .

[230]  W. Tao,et al.  Numerical Studies of Wet versus Dry Soil Regimes in the West African Sahel , 2007 .

[231]  W. Tao,et al.  Modeling Study of a Tropical Squall-Type Convective Line , 1989 .

[232]  T. Clark Use of Log-Normal Distributions for Numerical Calculations of Condensation and Collection , 1976 .

[233]  N. Phillips,et al.  Scale Analysis of Deep and Shallow Convection in the Atmosphere , 1962 .

[234]  J. Golaz,et al.  NOTES AND CORRESPONDENCE The Liquid Water Oscillation in Modeling Boundary Layer Cumuli with Third-Order Turbulence Closure Models , 2004 .

[235]  T. Clark,et al.  Severe Downslope Windstorm Calculations in Two and Three Spatial Dimensions Using Anelastic Interactive Grid Nesting: A Possible Mechanism for Gustiness , 1984 .

[236]  W. Tao,et al.  The Impact of Ocean Surface Fluxes on a TOGA COARE Convective System , 1996 .

[237]  Brian J. Hoskins,et al.  The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing , 1981 .

[238]  Mitchell W. Moncrieff,et al.  Organized convective systems in the tropical western pacific as a process in general circulation models: A toga coare case‐study , 1997 .

[239]  K. Carslaw,et al.  Vertical transport and processing of aerosols in a mixed‐phase convective cloud and the feedback on cloud development , 2005 .

[240]  Xiaoqing Wu,et al.  Long-Term Behavior of Cloud Systems in TOGA COARE and Their Interactions with Radiative and Surface Processes. Part III: Effects on the Energy Budget and SST. , 2001 .

[241]  Robert F. Adler,et al.  Microwave simulations of a tropical rainfall system with a three-dimensional cloud model , 1991 .

[242]  S. Rutledge,et al.  Convection in TOGA COARE: Horizontal Scale, Morphology, and Rainfall Production , 1998 .

[243]  R. Pielke,et al.  A comprehensive meteorological modeling system—RAMS , 1992 .

[244]  J. M. Shepherd,et al.  A Review of Current Investigations of Urban-Induced Rainfall and Recommendations for the Future , 2005 .

[245]  W. Read,et al.  Enhancement of cloud‐to‐ground lightning over Houston, Texas , 2001 .

[246]  Franco Molteni,et al.  Collaborative research at the intersection of weather and climate , 2007 .

[247]  W. Cotton,et al.  Aerosol Pollution Impact on Precipitation , 2009 .

[248]  R. Rotunno,et al.  A Theory for Strong, Long-Lived Squall Lines , 1988 .

[249]  Ming Hu,et al.  Impact of Configurations of Rapid Intermittent Assimilation of Wsr-88d Radar Data for the 8 May 2003 Oklahoma City Tornadic Thunderstorm Case , 2022 .

[250]  Ming-Jen Yang,et al.  CONVECTIVE-RADIATIVE-MIXING PROCESSES IN THE TROPICAL OCEAN-ATMOSPHERE , 2007 .

[251]  D. Parsons,et al.  Structure and Evolution of the 22 February 1993 TOGA COARE Squall Line: Numerical Simulations , 1996 .

[252]  W. Cotton,et al.  RAMS 2001: Current status and future directions , 2003 .

[253]  Brian E. Mapes,et al.  Gregarious Tropical Convection , 1993 .

[254]  J. T. Steiner A Three-Dimensional Model of Cumulus Cloud Development , 1973 .

[255]  E. Carbone,et al.  Research and development to improve quantitative precipitation forecasts in the warm season: A synopsis of the March 2002 USWRP Workshop and statement of priority recommendations , 2003 .

[256]  W. Tao,et al.  Cloud systems, hurricanes, and the tropical rainfall measuring mission (TRMM) : a tribute to Dr.Joanne Simpson , 2003 .

[257]  W. Cotton,et al.  A large-eddy simulation study of cumulus clouds over land and sensitivity to soil moisture , 2001 .

[258]  Joanne Simpson,et al.  Goddard Cumulus Ensemble Model. Part I: Model Description , 1993 .

[259]  D. Randall,et al.  Impact of Interactive Radiative Transfer on the Macroscopic Behavior of Cumulus Ensembles. Part II: Mechanisms for Cloud-Radiation Interactions , 1995 .

[260]  R. Houze,et al.  Rear Inflow in Squall Lines with Trailing Stratiform Precipitation , 1987 .

[261]  Donald R. MacGorman,et al.  Cloud-to-Ground Lightning Activity in the 10–11 June 1985 Mesoscale Convective System Observed during the Oklahoma–Kansas PRE-STORM Project , 1988 .

[262]  H. Tomita,et al.  Convectively Coupled Equatorial Waves Simulated on an Aquaplanet in a Global Nonhydrostatic Experiment , 2008 .

[263]  G. Feingold,et al.  An Efficient Numerical Solution to the Stochastic Collection Equation , 1987 .

[264]  Thomas Hauf,et al.  Convectively forced internal gravity waves: Results from two-dimensional numerical experiments , 1986 .

[265]  William R. Cotton,et al.  Impacts of Nucleating Aerosol on Florida Storms. Part I: Mesoscale Simulations , 2006 .

[266]  R. Houze,et al.  Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity , 1995 .

[267]  G. Young,et al.  Influence of precipitating convection on the surface energy budget observed during a tropical ocean global atmosphere pilot cruise in the tropical western Pacific Ocean , 1992 .

[268]  S. Rutledge,et al.  Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features , 2005 .

[269]  J. Curry,et al.  Confronting Models with Data: The Gewex Cloud Systems Study , 2003 .

[270]  F. Ludlam Clouds and Storms: The Behavior and Effect of Water in the Atmosphere , 1990 .

[271]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP) Web Site An Online Resource for Research , 2004 .

[272]  Rainer Bleck,et al.  A fast, approximative method for integrating the stochastic coalescence equation , 1970 .

[273]  W. Mordy Computations of the Growth by Condensation of a Population of Cloud Droplets , 1959 .

[274]  R. Houze Observed structure of mesoscale convective systems and implications for large-scale heating , 1989 .

[275]  R. Hemler,et al.  Numerical simulation of deep tropical convection associated with large-scale convergence , 1986 .

[276]  William R. Cotton,et al.  Urban Aerosol Impacts on Downwind Convective Storms , 2007 .

[277]  K. Lau,et al.  Equilibrium States Simulated by Cloud-Resolving Models , 1999 .

[278]  D. Randall,et al.  A Multiscale Modeling System: Developments, Applications, and Critical Issues , 2009 .

[279]  M. Hounslow,et al.  A discretized population balance for nucleation, growth, and aggregation , 1988 .

[280]  A. Pokrovsky,et al.  Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications , 2004 .

[281]  M. Andreae,et al.  Smoking Rain Clouds over the Amazon , 2004, Science.

[282]  G. Brier,et al.  Stormfury Cumulus Seeding Experiment 1965: Statistical Analysis and Main Results , 1967 .

[283]  J. Famiglietti,et al.  The Sensitivity of West African Convective Line Water Budgets to Land Cover , 2003 .

[284]  D. Randall,et al.  A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results , 2001 .

[285]  J. W. Fitzgerald Effect of Aerosol Composition on Cloud Droplet Size Distribution: A Numerical Study , 1974 .

[286]  K. D. Beheng,et al.  A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms , 2006 .

[287]  Isaac M. Held,et al.  Radiative-convective equilibrium with explicit two-dimensional moist convection , 1993 .

[288]  G. Sommeria,et al.  Three-Dimensional Simulation of Turbulent Processes in an Undisturbed Trade Wind Boundary Layer , 1976 .

[289]  A. Betts,et al.  Structure and motion of tropical squall‐lines over Venezuela , 1976 .

[290]  J. Wyngaard,et al.  Resolution Requirements for the Simulation of Deep Moist Convection , 2003 .

[291]  A. Bott,et al.  On the cloud processing of aerosol particles: An entraining air‐parcel model with two‐dimensional spectral cloud microphysics and a new formulation of the collection kernel , 2002 .

[292]  K. Lau,et al.  Radiative–Convective Processes in Simulated Diurnal Variations ofTropical Oceanic Convection , 1998 .

[293]  W. Tao,et al.  Vertical Profiles of Latent Heat Release and Their Retrieval for TOGA COARE Convective Systems Using a Cloud Resolving Model, SSM/I, and Ship-borne Radar Data , 2000 .

[294]  Wojciech W. Grabowski,et al.  An Improved Framework for Superparameterization. , 2004 .

[295]  T. Clark,et al.  Cloud-environment interface instability : rising thermal calculations in two spatial dimensions , 1991 .

[296]  John D. Tuttle,et al.  Inferences of Predictability Associated with Warm Season Precipitation Episodes , 2001 .

[297]  J. McWilliams,et al.  Investigating 2D modeling of atmospheric convection in the PBL , 2004 .

[298]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description , 2005 .

[299]  Robert F. Adler,et al.  An algorithm to estimate the heating budget from vertical hydrometeor profiles , 1990 .

[300]  Mitchell W. Moncrieff,et al.  A Numerical Investigation of the Organization and Interaction of the Convective and Stratiform Regions of Tropical Squall Lines , 1988 .

[301]  Andrew J. Majda,et al.  A Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part II: Nonlinear Simulations , 2007 .

[302]  Chung-Hsiung Sui,et al.  A preliminary study of the tropical water cycle and its sensitivity to surface warming , 1993 .

[303]  M. Facchini,et al.  Cloud albedo enhancement by surface-active organic solutes in growing droplets , 1999, Nature.

[304]  V. Ramanathan,et al.  Reduction of tropical cloudiness by soot , 2000, Science.

[305]  Steven K. Krueger,et al.  SUMMARY OF PROGRESS AND MAIN ACTIONS / RECOMMENDATIONS FROM THE NINTH MEETING OF THE GEWEX CLOUD SYSTEM STUDY ( GCSS , 2001 .

[306]  Jean-Luc Redelsperger,et al.  Comparison between a Three-Dimensional Simulation and Doppler Radar Data of a Tropical Squall Line: Transports of Mass, Momentum, Heat, and Moisture , 1988 .

[307]  R. C. Malone,et al.  A multidimensional model for aerosols - Description of computational analogs , 1988 .

[308]  J. Curry,et al.  A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description , 2005 .

[309]  W. Tao,et al.  Tropical Deep Convection and Ozone Formation , 1997 .

[310]  J. Gamache,et al.  Diagnosis of Cloud Mass and Heat Fluxes from Radar and Synoptic Data , 1980 .

[311]  D. Rosenfeld TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall , 1999 .

[312]  U. Lohmann,et al.  How efficient is cloud droplet formation of organic aerosols? , 2004 .

[313]  S. Chai,et al.  A new aspect of condensation theory , 1980 .

[314]  The Initiation and Horizontal Scale Selection of Convection over Gently Sloping Terrain. , 1990 .

[315]  David P. Jorgensen,et al.  Structure and Evolution of the 22 February 1993 TOGA COARE Squall Line: Aircraft Observations of Precipitation, Circulation, and Surface Energy Fluxes , 1997 .

[316]  M. Moncrieff Analytical Models of Narrow Cold-Frontal Rainbands and Related Phenomena , 1989 .

[317]  Hiroaki Miura,et al.  Multiscale Organization of Convection Simulated with Explicit Cloud Processes on an Aquaplanet , 2007 .

[318]  K. D. Beheng,et al.  A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description , 2006 .

[319]  Harry H. Hendon,et al.  Some Implications of the Mesoscale Circulations in Tropical Cloud Clusters for Large-Scale Dynamics and Climate , 1984 .

[320]  Kazuo Saito,et al.  Sensitivity Experiments on the Orographic Snowfall over the Mountainous Region of Northern Japan , 1996 .

[321]  R. Rauber,et al.  Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall , 1986 .

[322]  Juanzhen Sun,et al.  Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part II: Retrieval Experiments of an Observed Florida Convective Storm , 1998 .

[323]  P. Webster,et al.  Tropical Upper-Tropospheric Extended Clouds: Inferences from Winter MONEX , 1980 .