Sparse multidimensional modal analysis using a multigrid dictionary refinement

We address the problem of multidimensional modal estimation using sparse estimation techniques coupled with an efficient multigrid approach. Modal dictionaries are obtained by discretizing modal functions (damped complex exponentials). To get a good resolution, it is necessary to choose a fine discretization grid resulting in intractable computational problems due to the huge size of the dictionaries. The idea behind the multigrid approach amounts to refine the dictionary over several levels of resolution. The algorithm starts from a coarse grid and adaptively improves the resolution in dependence of the active set provided by sparse approximation methods. The proposed method is quite general in the sense that it allows one to process in the same way mono-and multidimensional signals. We show through simulations that, as compared to high-resolution modal estimation methods, the proposed sparse modal method can greatly enhance the estimation accuracy for noisy signals and shows good robustness with respect to the choice of the number of components.

[1]  D. Brie,et al.  Analyse modale bidimensionnelle par approximation parcimonieuse et multirésolution , 2011 .

[2]  Jerry M. Mendel,et al.  Maximum likelihood detection and estimation of Bernoulli - Gaussian processes , 1982, IEEE Trans. Inf. Theory.

[3]  Xiaoli Ma,et al.  Ieee Transactions on Signal Processing Multidimensional Frequency Estimation with Finite Snapshots in the Presence of Identical Frequencies , 2022 .

[4]  J.J. Fuchs,et al.  Convergence of a Sparse Representations Algorithm Applicable to Real or Complex Data , 2007, IEEE Journal of Selected Topics in Signal Processing.

[5]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[6]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[7]  S.D. Cabrera,et al.  Adaptive refinement in maximally sparse harmonic signal retrieval , 2004, 3rd IEEE Signal Processing Education Workshop. 2004 IEEE 11th Digital Signal Processing Workshop, 2004..

[8]  Jean-Jacques Fuchs,et al.  Sinusoids in white noise: a quadratic programming approach , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[9]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[10]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[11]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[12]  T Vuillemin,et al.  Classification and treatment of zygomatic fractures: a review of 1,025 cases. , 1992, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[13]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[14]  Charles Soussen,et al.  From Bernoulli–Gaussian Deconvolution to Sparse Signal Restoration , 2011, IEEE Transactions on Signal Processing.

[15]  A. Zoubir,et al.  EURASIP Journal on Advances in Signal Processing , 2011 .

[16]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[17]  T. Kailath,et al.  Estimation of Signal Parameters via Rotational Invariance Techniques - ESPRIT , 1986 .

[18]  Martin Vetterli,et al.  Atomic signal models based on recursive filter banks , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[19]  W. Clem Karl,et al.  Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization , 2001, IEEE Trans. Image Process..

[20]  Souleymen Sahnoun,et al.  A comparative study of subspace-based methods for 2-D nuclear magnetic resonance spectroscopy signals , 2010 .

[21]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[22]  D. Donoho,et al.  Fast Solution of -Norm Minimization Problems When the Solution May Be Sparse , 2008 .

[23]  Randolph L. Moses,et al.  Two-dimensional Prony modeling and parameter estimation , 1993, IEEE Trans. Signal Process..

[24]  H. Carfantan,et al.  A Sparsity-Based Method for the Estimation of Spectral Lines From Irregularly Sampled Data , 2007, IEEE Journal of Selected Topics in Signal Processing.

[25]  El-Hadi Djermoune,et al.  Estimation of the parameters of two-dimensional NMR spectroscopy signals using an adapted subband decomposition , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[27]  Cédric Herzet,et al.  Bayesian pursuit algorithms , 2010, 2010 18th European Signal Processing Conference.

[28]  Alan S. Stern,et al.  NMR Data Processing , 1996 .

[29]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[30]  David L. Donoho,et al.  Application of basis pursuit in spectrum estimation , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[31]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[32]  D. Brie,et al.  Sparse multiresolution modal estimation , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[33]  A. Atkinson Subset Selection in Regression , 1992 .

[34]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[35]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[36]  S. D. Cabrera,et al.  Principal component separation in sparse signal recovery for harmonic retrieval , 2002, Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002.

[37]  Louis L. Scharf,et al.  Two-dimensional modal analysis based on maximum likelihood , 1994, IEEE Trans. Signal Process..

[38]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[39]  Stéphanie Rouquette-Léveil,et al.  Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods , 2001, IEEE Trans. Signal Process..