Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis ✩

This paper proves the global existence and boundedness of solutions to a general reaction–diffusion predator–prey system with prey-taxis defined on a smooth bounded domain with no-flux boundary condition. The result holds for domains in arbitrary spatial dimension and small prey-taxis sensitivity coefficient. This paper also proves the existence of a global attractor and the uniform persistence of the system under some additional conditions. Applications to models from ecology and chemotaxis are discussed.

[1]  XUEFENG WANG,et al.  Qualitative Behavior of Solutions of Chemotactic Diffusion Systems: Effects of Motility and Chemotaxis and Dynamics , 2000, SIAM J. Math. Anal..

[2]  T. Yokota,et al.  Existence of solutions to chemotaxis dynamics with Lipschitz diffusion and superlinear growth , 2014 .

[3]  Boying Wu,et al.  Strong Allee effect in a diffusive predator–prey system with a protection zone☆ , 2014 .

[4]  T. Hillen,et al.  Pattern formation in prey-taxis systems , 2009, Journal of biological dynamics.

[5]  Robert Stephen Cantrell,et al.  Avoidance behavior in intraguild predation communities: A cross-diffusion model , 2014 .

[6]  Wendi Wang,et al.  Global bifurcation of solutions for a predator–prey model with prey‐taxis , 2015 .

[7]  Michael Winkler,et al.  Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source , 2010 .

[8]  Sachiko Ishida,et al.  Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains , 2014 .

[9]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[10]  Yihong Du,et al.  Some Recent Results on Diffusive Predator-prey Models in Spatially Heterogeneous Environment ∗ † , 2005 .

[11]  Michael Winkler,et al.  Chemotaxis with logistic source : Very weak global solutions and their boundedness properties , 2008 .

[12]  H. Amann Dynamic theory of quasilinear parabolic systems , 1989 .

[13]  Youshan Tao,et al.  Boundedness in a chemotaxis model with oxygen consumption by bacteria , 2011 .

[14]  Mostafa Bendahmane,et al.  Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis , 2008, Networks Heterog. Media.

[15]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[16]  Michael Winkler,et al.  Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction , 2011 .

[17]  Robert Stephen Cantrell,et al.  Permanence in ecological systems with spatial heterogeneity , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  Dirk Horstmann,et al.  Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.

[19]  Michael Winkler,et al.  Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening , 2014 .

[20]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[21]  C. Stinner,et al.  New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models , 2014, 1403.7129.

[22]  Kentarou Fujie,et al.  Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity , 2014, Appl. Math. Lett..

[23]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[24]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[25]  Horst Malchow,et al.  Spatiotemporal Complexity of Plankton and Fish Dynamics , 2002, SIAM Rev..

[26]  Michael Winkler,et al.  Absence of collapse in a parabolic chemotaxis system with signal‐dependent sensitivity , 2010 .

[27]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[28]  Chunlai Mu,et al.  Global existence and boundedness of classical solutions to a parabolic–parabolic chemotaxis system , 2013 .

[29]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[30]  Dung Le,et al.  Cross diffusion systems on n spatial dimensional domains , 2002 .

[31]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[32]  Nicola Bellomo,et al.  Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues , 2015 .

[33]  Junjie Wei,et al.  Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey , 2011 .

[34]  Chunlai Mu,et al.  On a quasilinear parabolic–elliptic chemotaxis system with logistic source , 2014 .

[35]  D. F. Marks,et al.  An introduction , 1988, Experientia.

[36]  Mostafa Bendahmane,et al.  A reaction–diffusion system modeling predator–prey with prey-taxis , 2008 .

[37]  D. Lauffenburger,et al.  Effects of cell motility and chemotaxis on microbial population growth. , 1982, Biophysical journal.

[38]  Youshan Tao,et al.  Global existence of classical solutions to a predator–prey model with nonlinear prey-taxis , 2010 .

[39]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[40]  Christian Stinner,et al.  Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions , 2011, 1112.6202.

[41]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[42]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[43]  Local and global existence of solutions to a quasilinear degenerate chemotaxis system with unbounded initial data , 2016 .

[44]  J. P. Lasalle,et al.  Dissipative periodic processes , 1971 .

[45]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[46]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[47]  G. Odell,et al.  Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use Area-Restricted Search , 1987, The American Naturalist.

[48]  Andrew D. Taylor Metapopulations, Dispersal, and Predator‐Prey Dynamics: An Overview , 1990 .

[49]  Youshan Tao,et al.  Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.

[50]  Chunlai Mu,et al.  Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source , 2013 .

[51]  Junjie Wei,et al.  Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey , 2011 .

[52]  Herbert Amann,et al.  Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems , 1990, Differential and Integral Equations.

[53]  Yihong Du,et al.  A diffusive predator–prey model with a protection zone☆ , 2006 .

[54]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[55]  Junjie Wei,et al.  Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system ✩ , 2009 .

[56]  R. Aris,et al.  Traveling waves in a simple population model involving growth and death. , 1980, Bulletin of mathematical biology.

[57]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .

[58]  Jack K. Hale,et al.  Persistence in infinite-dimensional systems , 1989 .

[59]  Sachiko Ishida,et al.  Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type , 2012 .

[60]  Tian Xiang,et al.  Boundedness and global existence in the higher-dimensional parabolic–parabolic chemotaxis system with/without growth source , 2015 .