Efficient Computation of a Hierarchy of Discrete 3D Gradient Vector Fields

This paper introduces a novel combinatorial algorithm to compute a hierarchy of discrete gradient vector fields for three-dimensional scalar fields. The hierarchy is defined by an importance measure and represents the combinatorial gradient flow at different levels of detail. The presented algorithm is based on Forman’s discrete Morse theory, which guarantees topological consistency and algorithmic robustness. In contrast to previous work, our algorithm combines memory and runtime efficiency. It thereby lends itself to the analysis of large data sets. A discrete gradient vector field is also a compact representation of the underlying extremal structures – the critical points, separation lines and surfaces. Given a certain level of detail, an explicit geometric representation of these structures can be extracted using simple and fast graph algorithms.

[1]  Hans-Christian Hege,et al.  TADD: A Computational Framework for Data Analysis Using Discrete Morse Theory , 2010, ICMS.

[2]  Ulrich Bauer,et al.  Optimal Topological Simplification of Discrete Functions on Surfaces , 2012, Discret. Comput. Geom..

[3]  Henry King,et al.  Generating Discrete Morse Functions from Point Data , 2005, Exp. Math..

[4]  T. Steinke,et al.  Visualization of Vector Fields in Quantum Chemistry , 1996 .

[5]  A. C. Esq. XL. On contour and slope lines , 1859 .

[6]  J. Maxwell,et al.  On Hills and Dales , 2011 .

[7]  Herbert Edelsbrunner,et al.  Computing and Comprehending Topology: Persistence and Hierarchical Morse Complexes , 2001 .

[8]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[9]  Peter John Wood,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images , 2022 .

[10]  T. Weinkauf,et al.  Combinatorial Feature Flow Fields: Tracking Critical Points in Discrete Scalar Fields , 2011 .

[11]  Bernd Hamann,et al.  Practical Considerations in Morse-Smale Complex Computation , 2011, Topological Methods in Data Analysis and Visualization.

[12]  Tino Weinkauf Extraction of Topological Structures in 2D and 3D Vector Fields , 2008, Ausgezeichnete Informatikdissertationen.

[13]  R. Ho Algebraic Topology , 2022 .

[14]  R. Forman Morse Theory for Cell Complexes , 1998 .

[15]  J. Maxwell L. On hills and dales: To the editors of the Philosophical Magazine and Journal , 1870 .

[16]  Marc E. Pfetsch,et al.  Computing Optimal Morse Matchings , 2006, SIAM J. Discret. Math..

[17]  Olga Sorkine-Hornung,et al.  Topology‐based Smoothing of 2D Scalar Fields with C1‐Continuity , 2010, Comput. Graph. Forum.

[18]  A. Gyulassy Combinatorial construction of morse-smale complexes for data analysis and visualization , 2008 .

[19]  Thomas Lewiner,et al.  Optimal discrete Morse functions for 2-manifolds , 2003, Comput. Geom..

[20]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Contour and Slope Lines , 2009 .

[21]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[22]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[23]  Manoj K. Chari On discrete Morse functions and combinatorial decompositions , 2000, Discret. Math..