Introduction of an angle interrogated, MEMS-based, optical waveguide grating system for label-free biosensing

The presented label-free optical biosensor system relies on a MEMS micro-mirror to interrogate waveguide grating regions at a high repetition rate in the kHz range by scanning the angle of the incident coherent light. The angle-tunable MEMS mirror permits an extended scanning range and offers the flexibility to measure at various wavelengths and optical powers – an interesting feature for an enhanced surface-to-bulk sensitivity ratio and extended, multiplexed sensor arrays. An excellent refractometric sensitivity with a limit of detection towards effective refractive index changes of Δneff 150 kDa) and small (<250 Da) molecules. With fully-integrated optics, electronics and fluidics, the compact, low-power and affordable sensor unit is well-suited for in situ environmental monitoring or point-of-care diagnostics.

[1]  W. Lukosz,et al.  Grating couplers as integrated optical humidity and gas sensors , 1985 .

[2]  Rino E. Kunz,et al.  Novel miniature integrated optical goniometers , 1997 .

[3]  M. Textor,et al.  Biotin-Derivatized Poly(L-lysine)-g-poly(ethylene glycol): A Novel Polymeric Interface for Bioaffinity Sensing , 2002 .

[4]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[5]  David G Myszka,et al.  Analysis of small-molecule interactions using Biacore S51 technology. , 2004, Analytical biochemistry.

[6]  Mark E. Cooper,et al.  Label-free biosensors : techniques and applications , 2009 .

[7]  Wei Cheng,et al.  Temperature dependence of refractive index of Ta2O5 Dielectric Films , 1997 .

[8]  Peter D. Wentzell,et al.  Detection Limits of Chemical Sensors: Applications and Misapplications , 2012 .

[9]  Yun Hee Cho,et al.  Comparative analysis of 10 small molecules binding to carbonic anhydrase II by different investigators using Biacore technology. , 2006, Analytical biochemistry.

[10]  Lothar U. Kempen,et al.  Grating couplers in tapered waveguides for integrated optical sensing , 1994, Other Conferences.

[11]  W. Lukosz,et al.  Integrated optical output grating coupler as refractometer and (bio-)chemical sensor , 1993 .

[12]  S. Loefas,et al.  Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. , 1991, Analytical biochemistry.

[13]  Frank F Bier,et al.  Integrated planar optical waveguide interferometer biosensors: a comparative review. , 2014, Biosensors & bioelectronics.

[14]  Guy Voirin,et al.  Thickness-modulated waveguides for integrated optical sensing , 2002, SPIE BiOS.

[15]  J. Hubbell,et al.  Poly(l-lysine)-g-Poly(ethylene glycol) Layers on Metal Oxide Surfaces: Attachment Mechanism and Effects of Polymer Architecture on Resistance to Protein Adsorption† , 2000 .

[16]  M. Textor,et al.  Instrumental improvements in optical waveguide light mode spectroscopy for the study of biomolecule adsorption , 1997 .

[17]  S. T. Peng,et al.  Analysis and design of grating couplers , 1977 .

[18]  Eberhard Bodenschatz,et al.  Rapid switching of chemical signals in microfluidic devices. , 2009, Lab on a chip.

[19]  M. Textor,et al.  Optical grating coupler biosensors. , 2002, Biomaterials.

[20]  P. Nellen,et al.  Integrated optical input grating couplers as biochemical sensors , 1988 .

[21]  Claudiu T. Supuran,et al.  Carbonic anhydrases: novel therapeutic applications for inhibitors and activators , 2008, Nature Reviews Drug Discovery.

[22]  T. Gartmann,et al.  Experimental Validation of the Sensitivity of Waveguide Grating Based Refractometric (Bio)sensors , 2015, Biosensors.

[23]  W. Lukosz,et al.  Sensitivity of grating couplers as integrated-optical chemical sensors , 1989 .

[24]  R. Kunz,et al.  Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips , 2003 .

[25]  Jean-Marc Diserens,et al.  Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk. , 2009, Biosensors & bioelectronics.

[26]  Rino E. Kunz,et al.  Reference pads for miniature integrated optical sensors , 1997 .

[27]  Marcus Textor,et al.  Poly(l-lysine)-g-poly(ethylene glycol) Layers on Metal Oxide Surfaces: Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption , 2001 .

[28]  R. Astheimer,et al.  The temperature coefficient of the refractive index of water. , 1948, Journal of the Optical Society of America.

[29]  C. Hafner,et al.  FEM-Based Method for the Simulation of Dielectric Waveguide Grating Biosensors , 2013 .

[30]  R. D. Birkhoff,et al.  Optical and dielectric functions of liquid glycerol from gas photoionization measurements , 1978 .

[31]  L. F. Hoyt New Table of the Refractive Index of Pure Glycerol at 20°C , 1934 .

[32]  Matthew A. Cooper,et al.  Optical biosensors in drug discovery , 2002, Nature Reviews Drug Discovery.

[33]  R E Kunz,et al.  Wavelength-interrogated optical sensor for biochemical applications. , 2000, Optics letters.

[34]  G. Gauglitz,et al.  Characterization of grating couplers for affinity-based pesticide sensing. , 1997, Applied optics.

[35]  R. Aris On the dispersion of a solute in a fluid flowing through a tube , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  Carlo Edoardo Campanella,et al.  Label-free optical resonant sensors for biochemical applications , 2013 .

[37]  Stefan Kedenburg,et al.  Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region , 2012 .

[38]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  C. Fattinger The bidiffractive grating coupler , 1993 .

[40]  R. Kunz,et al.  Optimizing integrated optical chips for label-free (bio-)chemical sensing , 2006, Analytical and bioanalytical chemistry.