Parameter and quantile estimation for the three-parameter lognormal distribution based on statistics invariant to unknown location

Lognormal distribution is one of the popular distributions used for modelling positively skewed data, especially those encountered in economic and financial data. In this paper, we propose an efficient method for the estimation of parameters and quantiles of the three-parameter lognormal distribution, which avoids the problem of unbounded likelihood, by using statistics that are invariant to unknown location. Through a Monte Carlo simulation study, we then show that the proposed method performs well compared to other prominent methods in terms of both bias and mean-squared error. Finally, we present two illustrative examples.

[1]  N. Balakrishnan,et al.  A consistent parameter estimation in the three-parameter lognormal distribution , 2012 .

[2]  N. Balakrishnan,et al.  Computational Statistics and Data Analysis Estimation for the Three-parameter Lognormal Distribution Based on Progressively Censored Data , 2022 .

[3]  José A. Díaz-García,et al.  A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation , 2008, Computational Statistics & Data Analysis.

[4]  Wayne B. Nelson,et al.  Applied Life Data Analysis: Nelson/Applied Life Data Analysis , 2005 .

[5]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[6]  N. Balakrishnan,et al.  Conditional correlation analysis of order statistics from bivariate normal distribution with an application to evaluating inventory effects in futures market , 2003 .

[7]  A. Zients Andy , 2003 .

[8]  J. Bert Keats,et al.  Statistical Methods for Reliability Data , 1999 .

[9]  W. Nelson Statistical Methods for Reliability Data , 1998 .

[10]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[11]  H. Hirose Maximum likelihood parameter estimation in the three-parameter log-normal distribution using the continuation method , 1997 .

[12]  P. Sen,et al.  Order statistics and inference : estimation methods , 1992 .

[13]  Jee Soo Kim Parameter Estimation in Reliability and Life Span Models , 1991 .

[14]  E. Crow,et al.  Lognormal Distributions: Theory and Applications , 1987 .

[15]  Betty Jones Whitten,et al.  Modified Moment Estimation for the Three-Parameter Weibull Distribution , 1984 .

[16]  Russell C. H. Cheng,et al.  Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .

[17]  Wayne Nelson,et al.  Applied life data analysis , 1983 .

[18]  Betty Jones Whitten,et al.  Estimation in the Three-Parameter Lognormal Distribution , 1980 .

[19]  P. Billingsley,et al.  Probability and Measure , 1980 .

[20]  D. Wingo Moving truncations barrier-function methos for estimation in three-parameter lognormal models , 1976 .

[21]  D. Wingo The use of interior penalty functions to overcome lognormal distribution parameter estimation anomalies , 1975 .

[22]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[23]  Charles E. Antle,et al.  Discrimination Between the Log-Normal and the Weibull Distributions , 1973 .

[24]  F. Calitz MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE THREE‐PARAMETER LOGNORMAL DISTRIBUTION—A RECONSIDERATION1 , 1973 .

[25]  R. Wixley,et al.  Estimators Based on Order Statistics of Small Samples from a Three-Parameter Lognormal Distribution , 1970 .

[26]  A. H. Moore,et al.  Local-Maximum-Likelihood Estimation of the Parameters of Three-Parameter Lognormal Populations from Complete and Censored Samples , 1966 .

[27]  J. Lambert ESTIMATION OF PARAMETERS IN THE THREE‐PARAMETER LOGNORMAL DISTRIBUTION1 , 1964 .

[28]  Bruce M. Hill,et al.  The Three-Parameter Lognormal Distribution and Bayesian Analysis of a Point-Source Epidemic , 1963 .

[29]  A. Cohen,et al.  Estimating Parameters of Logarithmic-Normal Distributions by Maximum Likelihood , 1951 .

[30]  E. B. Wilson,et al.  The Normal Logarithmic Transform , 1945 .