Parameter and quantile estimation for the three-parameter lognormal distribution based on statistics invariant to unknown location
暂无分享,去创建一个
Narayanaswamy Balakrishnan | Hideki Nagatsuka | N. Balakrishnan | H. Nagatsuka | Narayanaswamy Balakrishnan
[1] N. Balakrishnan,et al. A consistent parameter estimation in the three-parameter lognormal distribution , 2012 .
[2] N. Balakrishnan,et al. Computational Statistics and Data Analysis Estimation for the Three-parameter Lognormal Distribution Based on Progressively Censored Data , 2022 .
[3] José A. Díaz-García,et al. A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation , 2008, Computational Statistics & Data Analysis.
[4] Wayne B. Nelson,et al. Applied Life Data Analysis: Nelson/Applied Life Data Analysis , 2005 .
[5] Gordon Johnston,et al. Statistical Models and Methods for Lifetime Data , 2003, Technometrics.
[6] N. Balakrishnan,et al. Conditional correlation analysis of order statistics from bivariate normal distribution with an application to evaluating inventory effects in futures market , 2003 .
[8] J. Bert Keats,et al. Statistical Methods for Reliability Data , 1999 .
[9] W. Nelson. Statistical Methods for Reliability Data , 1998 .
[10] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[11] H. Hirose. Maximum likelihood parameter estimation in the three-parameter log-normal distribution using the continuation method , 1997 .
[12] P. Sen,et al. Order statistics and inference : estimation methods , 1992 .
[13] Jee Soo Kim. Parameter Estimation in Reliability and Life Span Models , 1991 .
[14] E. Crow,et al. Lognormal Distributions: Theory and Applications , 1987 .
[15] Betty Jones Whitten,et al. Modified Moment Estimation for the Three-Parameter Weibull Distribution , 1984 .
[16] Russell C. H. Cheng,et al. Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .
[17] Wayne Nelson,et al. Applied life data analysis , 1983 .
[18] Betty Jones Whitten,et al. Estimation in the Three-Parameter Lognormal Distribution , 1980 .
[19] P. Billingsley,et al. Probability and Measure , 1980 .
[20] D. Wingo. Moving truncations barrier-function methos for estimation in three-parameter lognormal models , 1976 .
[21] D. Wingo. The use of interior penalty functions to overcome lognormal distribution parameter estimation anomalies , 1975 .
[22] Masatake Mori,et al. Double Exponential Formulas for Numerical Integration , 1973 .
[23] Charles E. Antle,et al. Discrimination Between the Log-Normal and the Weibull Distributions , 1973 .
[24] F. Calitz. MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE THREE‐PARAMETER LOGNORMAL DISTRIBUTION—A RECONSIDERATION1 , 1973 .
[25] R. Wixley,et al. Estimators Based on Order Statistics of Small Samples from a Three-Parameter Lognormal Distribution , 1970 .
[26] A. H. Moore,et al. Local-Maximum-Likelihood Estimation of the Parameters of Three-Parameter Lognormal Populations from Complete and Censored Samples , 1966 .
[27] J. Lambert. ESTIMATION OF PARAMETERS IN THE THREE‐PARAMETER LOGNORMAL DISTRIBUTION1 , 1964 .
[28] Bruce M. Hill,et al. The Three-Parameter Lognormal Distribution and Bayesian Analysis of a Point-Source Epidemic , 1963 .
[29] A. Cohen,et al. Estimating Parameters of Logarithmic-Normal Distributions by Maximum Likelihood , 1951 .
[30] E. B. Wilson,et al. The Normal Logarithmic Transform , 1945 .