Semi-automated identification and extraction of geomorphological features using digital elevation data

Abstract Geomorphological maps that are automatically extracted from digital elevation data are gradually replacing classical geomorphological maps. Commonly, digital mapping projects are based upon statistical techniques, object-based protocols or both. In addition to digital elevation data, expert knowledge can still be used to calibrate feature extraction algorithms. Such hybrid expert/statistical-based methods translate land surface parameters into areal extents of geomorphological features in an automated, reproducible manner, which increases spatial detail of final products and speeds up map production. The development of efficient statistical methods for the extraction of geomorphological features is today promoted by high-resolution digital elevation data from light detection and ranging (LiDAR) technology. In this chapter, case studies from the Netherlands (very low relief) and Austrian Alps (high relief) are presented to illustrate how statistical-based and object-based supervised classification can be used for the semi-automated identification and extraction of geomorphological features using high-resolution LiDAR digital elevation models (DEMs). In the first case study, multinomial logistic regression is used to increase the detail of a classic geomorphological map. Medial axes of the manually delineated polygons are used to locate the training pixels and to build the statistical model, which is then implemented over the whole area of interest. In the second case study, object-based segmentation of slope and topographic openness extracted from LiDAR data are used for rule-based mapping of geomorphological features. Both studies confirm that LiDAR DEMs can be used to increase detail of existing geomorphological maps. In addition, semi-automated techniques provide a more objective framework for geomorphological mapping.

[1]  Peter F. Fisher,et al.  Causes and consequences of error in digital elevation models , 2006 .

[2]  M. Stankoviansky,et al.  Folia Geographica. Series Geographica-Physica , 2009 .

[3]  Qing Zhu,et al.  Digital terrain modeling - principles and methodology , 2004 .

[4]  Lucy Bastin,et al.  A fuzzy c-means classification of elevation derivatives to extract the morphometric classification of landforms in Snowdonia, Wales , 2007, Comput. Geosci..

[5]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[6]  Marcus Gustavsson,et al.  Structure and contents of a new geomorphological GIS database linked to a geomorphological map : With an example from Liden, central Sweden , 2008 .

[7]  J. Walker,et al.  Australian Soil and Land Survey Field Handbook , 1984 .

[8]  M. Ruff,et al.  Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria) , 2008 .

[9]  J. Hillier,et al.  Plate-like subsidence of the East Pacific Rise - South Pacific Superswell system , 2003 .

[10]  A. C. Seijmonsbergen,et al.  Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM , 2006 .

[11]  Edzer J. Pebesma,et al.  Applied Spatial Data Analysis with R - Second Edition , 2008, Use R!.

[12]  J. Beek,et al.  Developments in Soil Science , 2019, Global Change and Forest Soils.

[13]  R. Soeters,et al.  Digital geomorphological landslide hazard mapping of the Alpago area, Italy , 2000 .

[14]  Arie C. Seijmonsbergen,et al.  Geomorphological mapping and geophysical profiling for the evaluation of natural hazards in an alpine catchment , 2006 .

[15]  J. Roering,et al.  Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon , 2008 .

[16]  Herman Theodoor Verstappen,et al.  Old and New Trends in Geomorphological and Landform Mapping , 2011 .

[17]  R. Congalton,et al.  Accuracy assessment: a user's perspective , 1986 .

[18]  T. Hengl,et al.  Geomorphometry: Concepts, software, applications , 2009 .

[19]  J. McKean,et al.  Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry , 2004 .

[20]  Andrew Nelson,et al.  Geomorphometry in ESRI packages , 2009 .

[21]  Kazunori Fujisawa,et al.  LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan , 2009 .

[22]  I. Evans,et al.  Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorphological mapping , 2008 .

[23]  B. Devereux,et al.  Evaluating the potential of high‐resolution airborne LiDAR data in glaciology , 2006 .

[24]  Tomislav Hengl,et al.  Geostatistical modeling of topography using auxiliary maps , 2008, Comput. Geosci..

[25]  Willem Bouten,et al.  Modelling channel incision and alpine hillslope development using laser altimetry data , 2009 .

[26]  Alejandro Velázquez,et al.  Remote sensing and GIS-based regional geomorphological mapping—a tool for land use planning in developing countries , 2001 .

[27]  Tomislav Hengl,et al.  A double continuous approach to visualization and analysis of categorical maps , 2004, Int. J. Geogr. Inf. Sci..

[28]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[29]  A. C. Seijmonsbergen,et al.  Comparing Landslide Hazard Maps , 1999 .

[30]  Guoan Tang,et al.  Advances in Digital Terrain Analysis , 2008 .

[31]  David G. Jenkins,et al.  GIS, SINKS, FILL, and disappearing wetlands: unintended consequences in algorithm development and use , 2006, SAC.

[32]  Brian D. Bue,et al.  Automated classification of landforms on Mars , 2006, Comput. Geosci..

[33]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[34]  M. Abdel-Latif,et al.  Landslide hazard assessment , 1994 .

[35]  Gerard B. M. Heuvelink,et al.  Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach , 2009 .

[36]  Sabine Grunwald,et al.  Environmental Soil-Landscape Modeling : Geographic Information Technologies and Pedometrics , 2005 .

[37]  Steven E. Franklin,et al.  An automated approach to the classification of the slope units using digital data , 1998 .

[38]  Lothar Schrott,et al.  Geomorphometry in mountain terrain , 2004 .

[39]  Mieczysław Klimaszewski,et al.  Thirty years of detailed geomorphological mapping , 1990 .

[40]  G. Maas,et al.  Geomorfologische kaart Nederland (GKN); achtergronddocument bij het landsdekkende digitale bestand , 2004 .

[41]  R. A. MacMillan,et al.  A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic , 2000, Fuzzy Sets Syst..

[42]  Arno Schäpe,et al.  Multiresolution Segmentation : an optimization approach for high quality multi-scale image segmentation , 2000 .

[43]  Robbie M. Andrew,et al.  Multi‐scale landform characterization , 2005 .

[44]  Tomislav Hengl,et al.  Supervised Landform Classification to Enhance and Replace Photo‐Interpretation in Semi‐Detailed Soil Survey , 2003 .

[45]  S. Norris Creatures of Culture? Making the Case for Cultural Systems in Whales and Dolphins , 2002 .

[46]  Marcus Gustavsson,et al.  Cartography: Design, Symbolisation and Visualisation of Geomorphological Maps , 2011 .

[47]  Inga E. Clark,et al.  Geomorphic Map of Worcester County, Maryland, Interpreted from a LIDAR-Based, Digital Elevation Model , 2008 .

[48]  Jochen Schmidt,et al.  Fuzzy land element classification from DTMs based on geometry and terrain position , 2004 .

[49]  Tomislav Hengl,et al.  Chapter 4 Preparation of DEMs for Geomorphometric Analysis , 2009 .

[50]  Friedrich Quiel,et al.  Geomorphometric feature analysis using morphometric parameterization and artificial neural networks , 2008 .

[51]  Arie C. Seijmonsbergen,et al.  A new symbol and GIS based detailed geomorphological mapping system: renewal of a scientific discipline for understanding landscape development , 2006 .

[52]  John P. Wilson,et al.  Terrain analysis : principles and applications , 2000 .

[53]  M. Bauer,et al.  Airborne laser scanning for riverbank erosion assessment , 2005 .

[54]  Edzer Pebesma,et al.  Applied Spatial Data Analysis with R. Springer , 2008 .

[55]  Mike J. Smith,et al.  Residual relief separation: digital elevation model enhancement for geomorphological mapping , 2008 .

[56]  S. Lane,et al.  The potential of digital filtering of generic topographic data for geomorphological research , 2009 .

[57]  Andrew Nelson,et al.  DEM production methods and sources , 2009 .

[58]  David M. Mark,et al.  Geomorphometric Parameters: A Review and Evaluation , 1975 .

[59]  S. M. Jong,et al.  Remote Sensing Image Analysis: Including The Spatial Domain , 2011 .

[60]  K. Kraus,et al.  Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .

[61]  Paul Wessel,et al.  An Empirical Method for Optimal Robust Regional-Residual Separation of Geophysical Data , 1998 .

[62]  Jaromír Demek,et al.  Guide to medium-scale geomorphological mapping , 1978 .

[63]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[64]  Olaf Conrad,et al.  SAGA - Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen , 2007 .

[65]  A. Goudie Encyclopedia of Geomorphology , 2003 .

[66]  Paul Wessel,et al.  Global distribution of seamounts inferred from gridded Geosat/ERS‐1 altimetry , 2001 .

[67]  M. Eeckhaut,et al.  Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium , 2008 .

[68]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[69]  M. Shirasawa,et al.  Visualizing topography by openness: A new application of image processing to digital elevation models , 2002 .

[70]  Walter Krämer,et al.  Review of Modern applied statistics with S, 4th ed. by W.N. Venables and B.D. Ripley. Springer-Verlag 2002 , 2003 .

[71]  Richard J. Pike,et al.  The geometric signature: Quantifying landslide-terrain types from digital elevation models , 1988 .

[72]  Jean-Luc Starck,et al.  A combined approach for object detection and deconvolution , 2000, Astronomy and Astrophysics Supplement Series.

[73]  Arie C. Seijmonsbergen Geomorphological evolution of an alpine area and its application to geotechnical and natural hazard appraisal in the NW. Rätikon mountains and S. Walgau (Vorarlberg, Austria) , 1992 .

[74]  Gerard B. M. Heuvelink,et al.  Geostatistical simulation and error propagation in geomorphometry , 2009 .

[75]  Thomas Blaschke,et al.  Image Segmentation Methods for Object-based Analysis and Classification , 2004 .

[76]  T. Blaschke,et al.  Automated classification of landform elements using object-based image analysis , 2006 .

[77]  R. Yokoyama,et al.  Supervised landform classification of Northeast Honshu from DEM-derived thematic maps , 2006 .

[78]  Tapani Sarjakoski,et al.  Error propagation of DEM-based surface derivatives , 2005, Comput. Geosci..

[79]  R. J. Pike,et al.  Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature , 2007 .

[80]  Thomas Blaschke,et al.  A comparison of three image-object methods for the multiscale analysis of landscape structure , 2003 .

[81]  Peter A. Burrough,et al.  High-resolution landform classification using fuzzy k-means , 2000, Fuzzy Sets Syst..

[82]  Kosmas Pavlopoulos,et al.  Computer-assisted discrimination of morphological units on north-central Crete (Greece) by applying multivariate statistics to local relief gradients , 2004 .

[83]  R. Detrick,et al.  Effect of the Galápagos hotspot on seafloor volcanism along the Galápagos Spreading Center (90.9–97.6°W) , 2004 .